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Abstract

We study the adoption of air-source heat pumps for home heating. We estimate that 5% of already-
built homes converted to heat pumps during 2010–2020, while 22% of new homes built during this period
chose heat pumps. New adoptions concentrate among rural households in the South. Conversions are
more diffuse, covering urban and rural households in every region. Conversions are more prevalent in
areas with mild winters and cheap electricity relative to other fuels but are less strongly associated with
energy costs than adoptions in new homes. To better understand the distributional implications going
forward, we calculate the annual energy-cost savings from switching to a heat pump for a large sample of
U.S. households based on their current heating fuels, climate, and local energy prices. We find massive
variation, with low-income households in the Northeast and Appalachians benefiting the most.
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1 Introduction

Many states have adopted net-zero carbon emissions goals. Renewable electricity generation has grown

substantially over the last 20 years, reducing average carbon emissions per kWh (Holland et al. 2020). As

emissions rates have fallen, attention has turned to further reducing carbon emissions by electrifying home

heating, hot water heating, and cooking. Currently, fossil-fuel combustion from these activities accounts for

more than 10% of all U.S. carbon emissions (RMI 2021). To promote electrification, cities in California and

elsewhere have banned new natural gas hookups, and New York has become the first state to ban natural

gas in new homes under its state building code.

Efforts to electrify home heating have focused on electric heat pumps, and many states have introduced

policies to encourage or subsidize their use (Nadel 2020); see Berg and Cooper (2020) for a complete list of

state-level policies. Dating to the 1930s (Haldane 1930), heat pumps—which work like air conditioners in

reverse, transferring heat from outside to inside the home—have made marked gains in efficiency over the

last 10 years. These gains have expanded the range of cold climates for which heat pumps are now suitable

for home heating. New innovations, potentially spurred by U.S. government “moonshot”-style initiatives,

could further improve efficiency, making heat pumps viable in even colder climates (5 degrees Fahrenheit or

below). Heat pumps have advanced to the point that they are now nearly synonymous with home-heating

electrification, since electric resistance heating is no longer cost-effective in most new applications. Indeed,

electric heat pumps now comprise more than 50% of all residential heaters shipped by manufacturers (see

online appendix A).

Who is adopting these heat pumps? Previous research has studied electrification in new homes (Davis and

Kilian 2011; Davis 2021). But new homes contribute less than 1% per year to the total housing stock and,

once built, houses last for decades.1 Thus, it is crucial to understand heat pump conversions in older homes.

What fraction of existing homes have switched to heat pumps in recent years? To what extent do these

retrofits differ by income, geography, and demographics? To what extent are they driven by energy prices

and climate? How do retrofits compare to heat pump adoptions in new homes? Finally, what are the energy-

cost savings from switching to a heat pump going forward and how do these benefits correlate with income,

geography, and demographics at the household level? In particular, are low-income households and other

disadvantaged groups likely to benefit from policies to promote electrification of home heating? Answering

these questions will provide valuable insights into the efficiency, effectiveness, and distributional impacts of

policies—such as adoption subsidies or carbon taxes or changes in electricity rate design—designed to relieve

energy burdens, reduce carbon emissions, or both.

We address these questions by providing a range of evidence on heat pump conversions. Our main analysis

1See recent U.S. Census data here: https://data.census.gov/table/ACSDP1Y2022.DP04. The data show that 11.9% of
housing units in 2022 were built in the twelve years 2011-2022, while more than 35% of homes were built before 1970.
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relies on the 2009, 2015, and 2020 waves of the Residential Energy Consumption Survey (RECS). We measure

net conversion rates via changes in the share of existing homes of the same vintage that use heat pumps, across

different RECS waves. We then explore geographic and demographic correlates of heat pump conversions

and offer suggestive evidence on price-responsiveness. The RECS does not identify household location below

the state level or which heating technology individual households had before adopting a heat pump. Thus,

to more accurately measure the benefits from converting to a heat pump, and how these benefits correlate

with income, geography, and household demographics, we turn to detailed microdata from the American

Community Survey (ACS). Using granular data on energy prices and climate at the U.S. Census Public

Use Microdata Area (PUMA) level, we calculate the private energy-cost savings from converting to a heat

pump for all 5.9 million ACS households during 2015–2019, based on their current heating fuels and other

observable characteristics. We then explore the distributional implications of these savings both for modern

in-service heat pumps, as well as for improved cold-climate heat pumps currently under development

Our analysis generates four main findings. First, for existing homes built before 2010 (92% of the housing

stock), we estimate a 0.05 increase in the share using heat pumps as their primary heating technology

over the last decade.2 Meanwhile, the share of new homes built in 2010 or later that use heat pumps is

0.22. Thus, recent growth in the overall share of heat pumps is dominated by conversions in existing homes

(0.92 · 0.05 ≈ 0.046) rather than installations in new homes (0.08 · 0.22 ≈ 0.018). These conversions coincide

with decreases in the share of homes using other forms of electricity and heating oil.

Second, conversions are more common in the South, among black households, and in homes built in or

around the 1980s. They are less common among higher-income and owner-occupied households. However,

in regressions that control for energy prices and these other covariates simultaneously, we largely find null

results. In particular, conversions are not strongly associated with income, race, home age, or region,

although they are more common in rural areas. This contrasts with newer homes, where heat pumps are

less common among Native American households and in the West and more common in the South. This

also contrasts with other heating technologies, where both conversions and adoptions in new homes exhibit

stronger correlations with income, home ownership, urban vs. rural, region, and home age.

Third, heat pump adoptions correlate strongly with energy costs, even after controlling for urban vs.

rural, region, home vintage, and detailed household demographics. These estimates suggest that a doubling

of relative energy costs (competing technologies vs. heat pumps) is associated with a 0.1 increase in the

share of existing homes converting to heat pumps over the last decade. Meanwhile, we find that a doubling

of relative energy costs is associated with a 0.3 increase in the share of new homes choosing heat pumps.

These results are consistent with higher switching costs in older homes, for example, because the duct-work is

2We use “heating fuel” to refer to the fuel source, and “heating technology” to refer to the heating mechanism. We refer to
electrification as a policy, but acknowledge that the primary heating technology used in electrification is the heat pump.
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tailored to a particular heating technology, or because the existing furnace has many years to live, or because

revised building codes apply mainly to new homes. Overall, our results imply that regional differences in

heat pump adoption are largely driven by regional differences in energy prices and climate.

Fourth, we find that the average private energy-cost savings from converting to a heat pump ranges

widely across U.S. localities (PUMAs) from negative $772 to positive $690 per year, though this average

masks significant heterogeneity across households within PUMAs. This variation is driven by vast differences

in heating demand (climate), energy prices, and baseline fuel types, all of which interact to determine the

benefits from switching. Leveraging our household-level calculations, we find that the private energy-cost

savings are highest for low- and medium-income households and people of Native American descent. These

results are consistent with higher benefits for rural households, who disproportionately rely on costly propane

and heating oil to heat their homes. Using proprietary data on shipments of heating equipment, we confirm

that heat pump shares largely track the distribution of private energy-cost savings.

We contribute to an economics literature on heating technology choice, nearly all of which focuses on new

homes or fails to differentiate new homes from old. Davis and Kilian (2011) model heating choice for new

homes as a function of energy prices. Davis (2021) decomposes the 70-year trend in home electrification for

new homes, emphasizing trends in energy prices and to a lesser extent geography, climate, home attributes,

and income. Davis (2023), Shen (2023), and Edwards et al. (2023) all focus specifically on heat pumps,

exploring demographic correlates of heat pump ownership in the cross section, while controlling for energy

prices. Like us, Davis (2023) relies on nationally representative microdata from RECS, while Shen (2023) and

Edwards et al. (2023) rely on zip-code and tract-level data, which may mask important correlations. We differ

in three key ways. First, we differentiate heat pump conversions from adoptions in new homes, developing

methods to infer conversions by comparing across multiple RECS waves.3 We show that conversions in the

last decade account for at least 32% of the installed base and 72% of the annual flow of adoptions. These

conversions are not well-explained by income or other demographics, echoing what Davis (2023) finds for

the installed base. Second, we construct detailed, household-level measures of energy demand and energy

costs for heat pumps versus other technologies, which reflect local climate conditions and individual housing

characteristics, in addition to energy prices. Like Davis (2023), we estimate price responses using cross-

sectional variation in energy costs. We show that conversions respond strongly to energy costs but are less

responsive to costs than heat pump adoptions in new homes. Third, we examine the net benefits of future

adoption, as well as their correlations with income and race, showing that low-income households would

3Hlavinka et al. (2016) and Shen et al. (2022) also focus on adoption in existing homes, exploring the role of up-front
incentives and advertising. But Hlavinka et al. (2016) is limited to monthly time-series data on adoption of ductless heat pumps
among homes already using electric heating in Oregon, Washington, Idaho, and Montana. Only a small fraction of homes in
our nationally representative data use ductless heat pumps. Meanwhile, Shen et al. (2022) study adoption in a portion of North
Carolina during 2016–2020 using several waves of Zillow’s assessor-reported property data. Their inclusion of property-level
fixed effects implies that their estimates reflect conversions. But it is unclear how often or how accurately assessors update
information on home heating systems over short time spans.
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benefit most.4

We also contribute to a growing literature on long-run responses to energy prices and the purchase of

energy-using durable goods. Buchsbaum (2023) shows that the long-run price elasticity of residential elec-

tricity demand exceeds the short-run elasticity by a wide margin, largely through a muted response to

temperature fluctuations. Likewise, Alberini et al. (2011) show that the long-run price elasticity of energy

demand is large for both electricity and natural gas but is weaker for low-income households. Our results

suggest that fuel-switching is one potential mechanism for large long-run effects. Like us, previous research

shows that households are sensitive to long-run differences in operating costs when purchasing energy-using

durable goods, including air conditioners (Rapson 2014), gasoline cars (Allcott and Wozny 2014), electric ve-

hicles (Bushnell et al. 2022), and home appliances (Houde and Myers 2021), with important implications for

electrification (Rapson and Bushnell 2022). Houde and Myers (2021) show that households in high-income

areas are more sensitive to energy costs for home appliances, while Bruegge et al. (2019) show that building

codes have differential effects on energy-efficiency measures across income levels. Likewise, our work explores

the correlation between income and the adoption of energy-saving durable goods.

The rest of this paper proceeds as follows. Section 2 describes our data sources. Section 3 describes our

methods for inferring heat pump conversions and explores the relationship between heat pump conversions

and energy costs, income, and other factors. Section 4 estimates the private benefits of heat pump conversion

for a large, nationally-representative sample and explores the distributional implications by race, income,

and geography. Finally, section 5 concludes.

2 Data sources

This section describes the various datasets we use to study heat pump conversions in recent years and to

study the distributional implications of heat pump adoption going forward. These two analyses share some

of the same datasets but use them in different ways and for different purposes, as we describe below.

2.1 Residential Energy Consumption Survey (RECS)

We construct our main sample for examining heat pump conversions using the RECS surveys from 2020,

2015, and 2009. The RECS is a regular survey fielded by the U.S. Energy Information Administration

(EIA). It is designed to be a representative sample of U.S. households, measuring energy equipment and

home energy consumption. We focus on the lower 48 states and the District of Columbia, omitting Alaska

and Hawaii. We apply RECS household sampling weights throughout so that all statistics and regression

4Deetjen et al. (2021) also features a calculation-based analysis, studying heat pump adoption using simulated hourly
consumption for houses in 55 cities across the United States. They do not examine past trends in heat pump conversions, and
focus on the public (inclusive of reduced emissions) vs. private benefit payoff. In contrast, we use detailed, observed household
consumption at the annual level, and focus on the private net benefits as these are most relevant to heat pump adoption.
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coefficients reflect population values.

We focus on a household’s reported main heating technology, which indicates the main fuel used for space

heating, the type of space heating equipment (e.g., ductless heat pump or central gas furnace), and the age

of this equipment. Age is given in ranges: less than 2 years, 2–4 years, 5–9 years, 10–19 years, and 20+

years. We use this information to identify when a home’s heating equipment was most recently replaced.

These questions are asked in each RECS wave. We combine all RECS waves from 2009–onward to form our

main sample, resulting in repeated cross-section that includes over 30,000 households.

The RECS reports a variety of home characteristics, including a categorical variable for home vintage by

decade. The vintage categories are consistent across RECS waves: pre-1950, 1950–1959, 1960–1969, and so

on. Thus, we are able to track changes in heating technology over time for homes of the same vintage, by

comparing across RECS waves. The RECS also includes information on each household’s location, though

the level of geographic detail varies. The 2020 RECS reports each household’s state, making it the finest

level of detail. The 2009 RECS reports large states or categories of 2+ smaller states; there are 27 such

areas. The 2015 RECS only reports U.S. census division; there are 10 such divisions.5

We also extract additional data to estimate and predict energy demand as a function temperature, home

attributes, and household characteristics. These data include: energy consumption used for space heating in

millions of British thermal units (MMBTU); reported heating degree days (HDD) for the survey year and a

30-year average of annual HDD for 1981–2010; home size in number of bedrooms, total number of rooms, and

square footage; the IECC climate zone; and household income reported in discrete intervals. Annual HDD is

calculated as 65◦F minus a day’s mean temperature (with negative values set to zero), summed across days

in the year. This variable captures heating needs for a given local weather and climate. Energy use for space

heating is approximately linear in HDD assuming a constant energy-to-heat conversion efficiency.

2.2 American Community Survey (ACS) Public Use Microdata

To examine correlates between potential benefits from heat pump adoption and demographics, we use

the American Community Survey (ACS) 5-year Public Use Microdata Sample (PUMS) for 2015-2019 from

the U.S. Census. The ACS PUMS is an annual survey of approximately 1% of U.S. households. While

ACS data tables and summaries are commonly used for tract- and block-level analyses, the U.S. Census

publishes the individual household results as well, with geography limited to Public Use Microdata Areas

(PUMAs). A PUMA is a census-defined spatial area that contains roughly 100,000 individuals or 40,000–

45,000 households. Urban areas might contain 10–40 PUMAs, providing a high level of spatial detail, while

sparsely populated areas might have PUMAs that cover large swathes of a state. Our 5-year 1% PUMS

5All three surveys additionally report the International Energy Conservation Code (IECC) climate zone, which we use to
exclude Alaska and Hawaii from our analysis.
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sample averages about 2,500 households per PUMA.6

We extract variables for annual household income, race of the head of household, total number of rooms,

total bedrooms, year built, and heating fuel for each house and household in the sample. We drop any

household that did not report on one or more variable. We also harmonize the household income, year

built, total bedrooms, and total rooms variables into bins, vintages, and counts that match RECS reporting,

allowing us to relate PUMS data for 2015–2019 to RECS data for 2015 and 2020. We also extract the

census-reported household weights, and match each PUMA to its IECC climate zone and the total heating

degree days for 2015–2019, calculated below.

While the ACS 5-year survey reports heating fuel, it does not report heating technology. Households that

report using “electricity” could either be using heat pumps or inefficient electric resistance heating, and this

distinction is important in our application. Thus, using the 2020 and 2015 RECS, we calculate the share

of households using heat pumps vs. electric resistance heating for each IECC climate zone and household

income bin. We then match each PUMS observation to its predicted heating technology share. Thus, we

capture differences in the use of heat pumps vs. electric heat by climate zone and income bin for households

that report using electric heat.

We drop 14% of observations that are missing income or home characteristics data, or that are located

outside the lower 48 states and District of Columbia, yielding a full PUMS sample of 5.95 million observations

in 2,336 PUMAs.

Census tracts have urban vs. rural designations; PUMAs do not. Thus, we assign urban vs. rural status

to each PUMA based on the population-weighted majority of the constituent census tracts, which we obtain

from the most recent decennial census in which the designations were published (2010). We relabel urban

clusters as urban, simplifying the designation into a dichotomous variable.

2.3 Temperature data

For temperature, we use the Oregon State PRISM Climate Group 2015–2019 daily maximum and minimum

temperatures for a 4km square grid spanning the continental United States (PRISM Climate Group 2023).

We calculate all temperature variables from the full-resolution 4km grid, then aggregate to the relevant

geography using population weights to avoid oversampling large but sparsely populated areas. Population

is obtained from the Center for International Earth Science Information Network (CIESIN) census grid files

for the 2010 decennial census (Warszawski et al. 2017).

6ACS Public Use Microdata can be found at https://data.census.gov/mdat
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2.4 Heating efficiency

In all sections, we measure consumption of “usable” heat energy in MMBTU. Likewise, we measure prices

in dollars per “usable” heat energy. While energy is billed per unit of volume, energy actually received for

heating depends on the heat content of the energy source, as well as the efficiency of the heating technology.

We convert volumes of input energy into MMBTU using standard conversion ratios from EIA.7 We then

convert input energy into “usable” heat using a fixed efficiency factor. This factor, known as the Average Fuel

Use Efficiency (AFUE), depends on the heating unit and measures energy output per energy input. We obtain

historic AFUE for natural gas, propane, and heating oil furnaces from EIA (2017). For each fuel, we use the

upper limit of the mid-efficiency range for the year closest to 2004, as this represents the average vintage of

furnaces likely to be replaced in 2015–2020. These AFUE values are 85% for propane, 93% for natural gas,

and 90% for heating oil.8 Electric resistance heating has an AFUE of 100%. In examining potential savings

from heat pump conversions, we use usable heat consumption as a technology-agnostic measure of energy

demand. In doing so, we assume that heating demand does not vary with heating technology, ruling out a

rebound effect. We hold the efficiency factors fixed across all of our analyses. While furnace efficiency has

improved substantially over the last 50 years, it has changed little over the last 20 years. For example, the

modal efficiency of a natural gas furnace shipped between 2013–2020 was 95% AFUE (O’Brien and Vondra

2023), only 2 percentage points more efficient than the 2004 efficiency measure we use.

Unlike other heating technologies, a heat pump does not generate heat for use inside a home. Rather, it

transfers heat from outside to inside the home, which allows it to achieve an efficiency rating greater than

100%. Further, a heat pump does not have a constant efficiency factor. Rather, its efficiency depends on

temperature, becoming less efficient at temperatures below 45◦F, as captured by the Coefficient of Perfor-

mance (COP). We calculate the average COP separately for every 4km cell in the PRISM data based on the

local distribution of daily temperature. In the end, the COP for heat pumps ranges from 1.91 (analogous to

an AFUE of 191%) in North Dakota to over 3.5 (AFUE of 350%) in warmer locations. We then aggregate to

the relevant geography, weighting by population. See section B of the online appendix for details, including

a map of mean COP by PUMA.

2.5 Fuel prices

Fuel prices are used to better understand the role of energy costs in heat pump adoption, and to examine

correlates between potential benefits from heat pump adoption and demographics. In all cases, we obtain

fuel prices from publicly available Energy Information Administration (EIA) data. We use state-level annual

or monthly prices when pairing with RECS (which at best reports the state of the responding households).

7See here: https://www.eia.gov/energyexplained/units-and-calculators/
8For example, a home that uses 100 MMBTU of propane for space heating (AFUE of 85%) has usable heat consumption of

0.85× 100 = 85 MMBTU. To receive the same usable heat via a natural gas furnace (AFUE of 93%) would require 85
0.93

= 91.4
MMBTU of natural gas.
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We use utility-level prices in contexts that allow for more spatial granularity. We only use data for residential

customers and we adjust all fuel prices to January 2019 using the monthly Consumer Price Index (CPI-U)

published by the Bureau of Labor Statistics. When adjusting annual prices, we use the monthly CPI averaged

over each year.

2.5.1 Fuel prices by state

When matching to our RECS data, we use aggregate fuel prices by state and year. We further aggregate

to the 27 states or groupings of 2+ states reported in the 2009 RECS to achieve compatibility with the 2020

RECS, using the household sampling weights from the 2020 RECS.

The EIA reports annual average residential natural gas prices by state, which they calculate as annual

revenue divided by annual sales volume. We likewise calculate average residential electricity prices, dividing

annual revenue by annual sales volume. Revenues for natural gas and electricity include fixed charges. Thus,

the average prices we use will tend to overstate the variable prices that in theory should matter for heating

technology choices. However, Ito (2014) shows that consumers in California respond to average electricity

prices rather than marginal prices. Thus, we use average prices to best model household choices of heating

technology.

The EIA reports weekly propane and heating oil prices by state or by Petroleum Administration for Defense

Districts (PADD) region during the heating months (September to March) each year. For states that do

not explicitly report, we use the price of the nearest PADD. Non-reporting states tend to have low usage of

the respective fuel. For instance, southern states use little heating oil and do not report weekly heating oil

prices. But they do use propane, which is reported. Annual prices are required for analysis; we calculate the

straight average of these prices for the year. These prices are only reported for the winter heating months.

Thus, the unweighted average will tend to reflect fuel costs most relevant for home heating.

Figure 1 shows the annual means of our energy prices for 2010–2020 weighted by the households in our

2020 RECS sample. Prices for natural gas, heating oil, propane, electricity (resistance), and heat pumps are

all expressed in dollars per MMBTU of usable heat, i.e. accounting for different energy units and efficiency

levels across these technologies (see above). Note that electric-resistance heating has the costliest energy on

average, followed by propane and heating oil. Natural gas is the cheapest energy overall, but only by a hair;

heat pumps are a very close second. Electricity is the most expensive energy in dollars per MMBTU of raw

energy (top line). Yet the effective cost for a heat pump is only one-third as high due to the technology’s

superior efficiency. These averages mask substantial variation in prices across states. We use this price

variation below to estimate price responses.
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Figure 1: Energy prices for different heating technologies

Note: This figure shows annual energy prices in dollars per usable MMBTU for natural gas,

heating oil, propane, electricity (resistance), and heat pumps, accounting for the different effi-

ciency levels of these technologies. Costs are annual means across all households in the 2020

RECS given their time-varying state-level energy prices and location-varying heat pump effi-

ciency. Data source: Author calculations based on EIA and RECS data.

2.5.2 Fuel prices by utility

In our spatially disaggregate analyses of the potential benefits of heat pump conversion, we calculate the

expected energy-cost savings from heat pump adoption by 2010 Public Use Microdata Area (PUMA) based

on average fuel prices for 2015–2019. We continue to use state-level propane and heating oil prices from

EIA as described above (or PADD when state is not available), but we use more spatially refined prices for

natural gas and electricity available from EIA as described here.

We start by matching PUMAs to electricity and natural gas utility service territories using maps published

in the Homeland Infrastructure Foundation-Level (HIFLD) Database, augmented with zipcode-level data

compiled by the National Renewable Energy Laboratory (NREL).9 These maps are compiled from EIA

filings and maps published by utilities themselves. Utility territories for electricity are reported by zip code.

For zip codes with multiple utilities, we select the largest utility (as measured by total number of customers).

We then aggregate from zip code to PUMA. When a PUMA overlaps with more than one utility area, we

use the utility of largest overlap.

9See here: https://hifld-dhs-gii.gov/HIFLD and https://catalog.data.gov/dataset/

u-s-electric-utility-companies-and-rates-look-up-by-zipcode-2020
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We obtain electricity prices for most utilities from EIA Form 861M, which reports monthly revenue and

sales quantity by customer type for large utilities, plus a residual “state adjustment” that captures the

non-reporting utilities. We calculate average electricity price as revenue divided by sales quantity for the

October–April heating season, so that electricity prices reflect any seasonal pricing adjustments.10 Not all

PUMAs match to a reporting electric utility; in such cases we use average prices for the “state adjustment”

areas. Prices are deflated to January 2019, and averaged over the period 2015–2020 when used for calculating

potential benefits from heat pump conversion.

We calculate annual natural gas prices for all utilities that report on EIA Form 176. Filed annually,

EIA Form 176 records total revenue and sales volume for each utility (with multi-state utilities reporting

separately for each state). We calculate natural gas prices as revenue divided by sales volume, yielding a

utility-specific average price. For natural gas utilities that do not report on EIA Form 176, we use the natural

gas price for the nearest reporting utility. This approximates the likely price of natural gas should a utility

expand to provide service to currently un-served areas. A total of 96% of all PUMAs map to a natural gas

utility represented in EIA Form 176, with the plurality of un-matched PUMAs occurring in Florida, North

Carolina, and Georgia.11

We augment the EIA Form 861M data for the state of Georgia with survey data from the Georgia Public

Services Commission (GPSC).12 The GPSC surveys Georgia’s regulated utilities annually, recording bill

totals for hypothetical consumption levels of 500, 1,000, 1,500, and 2,000 kWh. This survey is performed

twice each year, generating a “winter” and a “summer” rate for each utility. We regress hypothetical revenues

on consumption levels (four data points) for each utility, year, and season. We calculate average variable

price as the mean of our slope estimates for 2014–2019. When available, we use these average prices to

replace our similar estimates based on EIA Form 861M. The GPSC reports survey results for 92 utilities, of

which 20 match to HIFLD-reported utility service areas.13 As a robustness check, we also calculate prices

without the GPSC data (see appendix D).

3 Trends in heat pump conversions

In this section we estimate trends in heat pump conversions over the last decade. We infer conversions

from increases over time in the share of existing homes that rely on heat pumps. These approaches only allow

us to infer net conversions in aggregate. We are unable to directly measure transitions from one heating

technology to another, because RECS does not follow the same households over time.

10The heating season for heating oil and propane is reported as October to March. However, both heating oil and propane
are storable and thus the purchase season is shorter than the use season.

11Unlike EIA Form 861M for electricity, EIA Form 176 for natural gas does not report total revenue and sales quantity for
the “state adjustment” areas.

12See here: https://psc.ga.gov/utilities/electric/residential-rate-survey/
13Remaining unmatched utilities do not have unique, exclusive territories or do not appear in HIFLD maps.
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Figure 2: Heating technology by RECS wave and home vintage

Note: This figure shows the share of households that rely on an air-source heat pump, other forms of electricity, natural

gas, or heating oil conditional on home vintage for each RECS wave. In constructing the figure, we restrict the sample

to households that heat their home with electricity, natural gas, heating oil, propane, or wood, and we account for RECS

household sampling weights. Data source: RECS 2009, 2015, and 2020.

3.1 Inferring conversions across RECS waves

We identify net conversions over the last decade based on changes in the share of existing homes that use

heat pumps as their main heating technology. We start with a pooled cross section of the RECS waves from

2009, 2015, and 2020. We restrict the sample to households whose homes were built in 2009 or earlier and

who heat their home using air-source heat pumps, other forms of electricity (mainly baseboard and central

electric resistance heating), natural gas, heating oil, propane, or wood. Figure 2 plots heating technology

shares conditional on home vintage across the three RECS waves. The figure shows that homes are more

likely to have heat pumps and natural gas and less likely to have other technologies in each subsequent wave.

We interpret these changes as net conversions in heating technology. Heat pump shares increase across all

vintage of homes. Meanwhile, the share of homes using other forms of electricity falls mainly among newer

homes, while the share of homes using heating oil falls mainly among older homes. This finding foreshadows

many of our later results: heat pump conversions are widespread but the replaced technologies vary by age
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Table 1: Regression results: heating technology by RECS wave for old and new homes

Panel (a): Old homes

(1) (2) (3) (4) (5)
HP Elec Gas Oil Prop

Constant 0.089*** 0.260*** 0.507*** 0.068*** 0.051***
(0.003) (0.005) (0.005) (0.002) (0.003)

RECS 2015 0.014* -0.005 0.008 -0.015*** -0.008
(0.006) (0.008) (0.009) (0.004) (0.004)

RECS 2020 0.050*** -0.050*** 0.035*** -0.023*** -0.007*
(0.004) (0.006) (0.007) (0.003) (0.003)

Observations 32506 32506 32506 32506 32506

Panel (b): New homes

(1) (2) (3) (4) (5)
HP Elec Gas Oil Prop

RECS 2009 0.143*** 0.310*** 0.438*** 0.021*** 0.072***
(0.010) (0.013) (0.014) (0.003) (0.009)

RECS 2015 0.149*** 0.356*** 0.390*** 0.006 0.071***
(0.025) (0.036) (0.038) (0.006) (0.020)

RECS 2020 0.223*** 0.288*** 0.433*** 0.003* 0.043***
(0.012) (0.013) (0.014) (0.001) (0.005)

Observations 3500 3500 3500 3500 3500

Note: This table reports coefficient estimates for ten OLS regressions. The depen-

dent variable in each column is an indicator for a given heating technology. Panel

(a) reports coefficient estimates from a regression on a constant term and RECS

wave dummies. This panel uses pooled data for homes built in 2009 or earlier from

RECS waves 2009, 2015, and 2020. Panel (b) reports coefficient estimates from a

regression on RECS wave dummies with the constant term suppressed. This panel

uses pooled data for homes built in 2000 or later from the 2009 RECS and homes

built in 2010 or later from the 2015 and 2020 RECS. Observations are weighted by

RECS household sampling weights. Standard errors in parentheses are robust to

heteroskedasticity. Note *, **, and *** indicate statistical significance at the 5%,

1%, and 0.1% levels respectively. Data source: RECS 2009, 2015, and 2020.

and location, depending on the installed base of alternative technologies.

Formally, we measure conversions relative to 2009 via regression using a linear probability model:

yi = β0 + β1RECS 2015i + β2RECS 2020i + ϵi, (1)

where: yi is a binary 0/1 variable indicating whether household i uses a given technology (heat pump, other

electric, natural gas, heating oil, or propane) as their main source of heating; RECS2015 and RECS2020 are

dummy variables indicating the 2015 and 2020 waves; ϵi is an idiosyncratic error; and the β’s are parameters

to be estimated. We estimate this model separately for every heating technology.

Table 1 panel (a) reports the OLS coefficient estimates. The constant term reports heating fuel shares
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in 2009, while the coefficients on 2015 and 2020 indicate changes relative to 2009.14 The coefficient on the

2020 dummy in column (1) indicates a 0.050 increase in the share of homes that use heat pumps. Given

the starting share of 0.089, this represents a net conversion rate of 0.050/(1 − 0.089) ≈ 5.5%. Meanwhile,

the other columns indicate net conversions toward natural gas and away from electricity, heating oil, and

propane. The table omits a tiny fraction of households that heat with wood or other technologies.15

Note that the conversion rate is even higher if we consider that not all homes are equally at risk of replacing

old or broken equipment. Figure 3 plots the distribution of heating equipment age in the 2020 RECS for

homes of all vintages, and likewise for the 2009 and 2015 RECS. The age distribution has remained quite

stable in recent years (compare 2020 to 2009 and 2015). The figure indicates that 46.5% of homes have

equipment less than 10 years old, while one-quarter have equipment less than 5 years old. Thus, roughly

half of heating systems will be replaced over the course of a decade. These values imply that the conversion

rate for homes built in 2009 or earlier is closer to 5.5/0.465 ≈ 12% among homes at risk of replacing

equipment.

For comparison, table 1 panel (b) reports choices of heating technology for recently built homes. The row

labeled RECS 2009 reports estimated heating technology shares in 2009 for homes built in 2000–2009, while

the rows labeled RECS 2015 and RECS 2020 report shares in 2015 and 2020 for homes built in 2010–2015

and 2010–2020. The share of new homes relying primarily on a heat pump is 0.22 in 2020 compared to just

0.14 in 2009. Meanwhile, the share relying on other forms of electricity, natural gas, heating oil, and propane

are all lower in 2020 than in 2009. This evolution toward heat pumps and away from other technologies

may reflect changes in where new homes are being built, along with changes in heating technology over

time within a given location. Note that the 2015 shares are quite close to the 2009 shares. Thus, the table

indicates a marked acceleration toward heat pumps in new homes in the latter half of the 2010s.

So which has contributed more to the recent growth in heat pumps: new or existing homes? Only 5% of

existing homes switched to heat pumps during the 2010s, while 22% of new homes had heat pumps. Yet new

homes accounted for just 8% of all homes in 2020, while old homes accounted for 92%. Thus, conversions

in old homes contributed 0.05 · 0.92 ≈ 0.046 to the overall share of homes with heat pumps in 2020, while

new homes contributed just 0.08 · 0.22 ≈ 0.018. Thus, a full 4.6/(4.6+1.8) ≈ 72% of the annual flow of heat

pump adoptions over the last decade is due to heat pump conversions in existing homes. Meanwhile, these

14Table C.1 panel (a) in the online appendix shows the same information in levels: heating technology shares for each RECS
wave.

15One potential concern is compositional changes in the location and vintage of existing homes across RECS waves, which
could bias our estimates for conversion rates. Note that RECS purports to be a nationally representative survey, which should
mitigate such concerns. To confirm, we replicate our analysis, including controls for urban vs. rural, census division, and
home vintage. The coefficient on RECS 2020 for heat pumps in column (1) changes from 0.050 to 0.056, implying a slightly
higher conversion rate. The coefficient for natural gas in column (3) changes the most, falling from 0.036 to 0.016. The other
coefficients barely budge. Table C.1 panel (b) in the online appendix presents these results.
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Figure 3: Distribution of heating equipment age

Note: This figure shows the cumulative distribution of heating equipment age in the 2009, 2015,

and 2020 RECS among homes of all vintages. In constructing the figure, we account for RECS

household sampling weights. Data source: RECS 2009, 2015, and 2020.

recent conversions accounted for 4.6/(0.92 · 0.140 + 0.08 · 0.22) ≈ 31% of the installed base in 2020.16

3.2 Correlates of heat pump conversions

In this section we explore how heat pump conversions correlate with energy costs, income, and other

factors. We begin by describing how we measure energy costs for space heating for the homes in our RECS

sample. We then illustrate our approach by presenting graphical evidence on the correlation between heat

pump conversions and energy costs. Finally, we use a regression-based approach to reveal how heat pump

conversions correlate with energy costs, geography, and demographics.

3.2.1 Measuring energy costs for space heating

We assume that households choose heating technology based in part on a comparison of relative energy

costs. Thus, for every home in our 2009 and 2020 RECS sample, we calculate the expected energy cost for

space heating using a heat pump vs. the expected cost using other technologies, accounting for differences

in local energy prices, climate, and efficiency.

We first estimate expected heating demand (usable MMBTU) as a function of local climate and home

characteristics. The RECS reports total MMBTU used for space heating. We convert this number into usable

16Note that 14.0% of homes built in 2009 or earlier had heat pumps in 2020. See table C.1 panel (a) in the online appendix.
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MMBTU using efficiency conversion factors from EIA (2017). As MMBTU is non-negative, we estimate the

following model via Poisson regression using pooled RECS data from 2009, 2015, and 2020:

E[MMBTUi] = exp(β0 + β1 lnHDDi + β2 ln sqfti + vintagei + zonei), (2)

where: HDD is annual heating degree days reported in the RECS; sqft is home size in square feet; and

vintage and climate capture home vintage and IECC climate zone fixed effects. We omit households that

report using a heat pump and those reporting zero HDD.

We then use our estimated model to predict heating demand for all households in our 2009 and 2020 RECS

samples (including those with heat pumps), replacing survey-year HDD with the 30-year annual mean HDD

to yield a forward-looking expected value purged of annual temperature shocks. Note that predictions from

a Poisson regression are unbiased in levels; in contrast, modeling log(MMBTU) with an additive error would

require more complex adjustments to yield unbiased predictions in levels.

Finally, we multiply by the local price of electricity (adjusted for the local COP for heat pumps) to yield

annual energy costs under a heat pump. Likewise, we multiply by the local prices of electricity, natural gas,

heating oil, and propane (all similarly adjusted by their constant AFUE values) to yield expected annual

energy costs under each of these technologies. Local energy prices are based on the 27 individual states or

groups of 2+ states reported in the 2009 RECS. We are interested in modeling changes in heating technology

that occur between 2009 and 2020. Thus, we use mean energy prices for the ten-year period 2010–2019.

In our regressions, we use logged heating costs for heat pumps. Meanwhile, we construct a composite

logged “other fuel” heating cost for each home by taking a weighted average of logged costs for electricity,

natural gas, heating oil, and propane, using as weights the local share of all 2009 and 2020 RECS households

that choose these fuels (for the individual state or group of 2+ states).

3.2.2 Graphical evidence on heat pump conversions and heating costs

We begin with a graphical presentation to illustrate our approach, focusing on the role of energy costs. We

again focus on households in the 2009 and 2020 RECS whose homes were built in 2009 or earlier and whose

primary source of heating is a heat pump, other electricity, natural gas, heating oil, propane, or wood. To

explore the relationship between heat pump conversions and energy costs, we estimate the following linear

probability model using OLS:

hpi = β0 + β1RECS 2020i + ϵi, (3)

where hpi is an indicator for heat pump as the primary heating technology and the coefficient β1 measures

net conversions occurring between 2009 and 2020. We estimate this model separately for each state or group

of 2+ states.

Figure 4 plots the resulting coefficient estimates vs. mean relative energy costs during 2010–2019 for each
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Figure 4: Heat pump conversions vs. relative energy costs by location

Note: This figure plots the estimated coefficient on the RECS 2020 dummy in equation (3) estimated

separately for each state or group of 2+ states vs. mean relative energy costs in those same locations.

The sample is all 2009 and 2020 RECS households whose homes were built in 2009 or earlier. The

black dots represent the OLS point estimates, while the vertical bars represent the heteroskedasticity-

robust 95% confidence intervals. The figure also shows an OLS fitted line through the point estimates,

weighted by households in the 2020 RECS sample. We measure relative energy costs for each household

as the weighted-average logged annual cost of heating via other fuels (electricity, natural gas, heating

oil, and propane) minus the logged cost of heating via a heat pump; weights are based on heating

technology shares in the 2009 and 2020 RECS for each location. We then calculate mean relative costs

for each location using RECS household sampling weights.

location. There is a clear positive correlation: states with high energy costs for other fuels relative to a

heat pump have seen more conversions to heat pumps in recent years. On average, a doubling of relative

energy costs (moving from the far left to far right in the figure) is associated with a 0.15 increase in the

share of homes converting to a heat pump.17 Of course, this association does not control for other drivers

of conversions. We therefore turn to a controlled regression below, asking whether the rate of heat pump

conversions differs systematically with energy costs and other factors.

3.2.3 Interactions with energy costs and demographics

We now explore how heat pump conversions correlate with energy costs, demographics, and other factors

in a more systematic way. To do this, we interact the RECS 2020 dummy with energy costs as well as

17The results are nearly identical when we omit households whose heating equipment is less than two years old and repeat
the analysis (see online appendix C), alleviating concerns that the results are heavily influenced by the Covid pandemic.
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indicators for different categories of income, race, renter vs. owner-occupied, urban vs. rural, census region,

and home vintage. We continue to focus on homes built in 2009 or earlier in the 2009 and 2020 RECS. We

estimate the following linear probability model using OLS:

hpi = β0 + β1RECS 2020i + γ′Xi + δ′Xi · RECS 2020i + ϵi, (4)

where hpi is again an indicator for heat pump. Note that we have added controls for individual-level

energy costs and other observables (X) along with interactions between the RECS 2020 dummy and these

observables (Xi ·RECS 2020), where γ and δ are vectors of coefficients on the covariates and their interactions

with the RECS 2020 dummy. We are mainly interested in the coefficients on the interactions (δ), which

capture systematic differences in conversion rates by energy costs and other factors.

Table 2 reports the OLS coefficient estimates (δ) on the interactions between the RECS 2020 dummy and

the observed covariates (Xi · RECS 2020). We suppress the coefficients on the new equipment dummy and

the covariates themselves to focus on the interaction terms.18

Columns (1)–(7) explore one set of covariates at a time. Consistent with the graphical analysis above,

conversions are positively associated with energy costs for other fuels relative to a heat pump (column 1).

Note that the coefficient of 0.155 is nearly identical to the slope in figure 4. Conversions are more prevalent

in the South (column 6). Meanwhile, they are less prevalent among homeowners (column 4) and high-income

households (column 2).19 But they are not strongly associated with major categories of race (column 3), rural

vs. urban (column 5), or home vintage in the post-War period (column 7). Column (8) includes all of these

variables simultaneously. The coefficient on rural turns positive. But the coefficients on income, race, owner,

region, and vintage remain small or become even smaller. Thus, controlling for energy costs, heat pump

conversions are distributed fairly evenly across households.20 Note that these coefficients do not condition on

a household’s original heating equipment, which we do not observe. Meanwhile, heat pumps and natural gas

are both positively associated with income and home-ownership in the 2009 base year, while other forms of

electricity are negatively associated with these variables. Thus, the negative coefficients on high income and

home-ownership might reflect weaker incentives to switch for individual households initially using low-cost

natural gas and stronger incentives to switch for individual households using high-cost electricity.

The coefficient on ln(other cost)−ln(hp cost) in column (8) yields a precisely estimated coefficient of 0.101.

Thus, a doubling of energy costs for other fuels relative to a heat pump is associated with an approximate 0.10

increase in the share of households converting to a heat pump over the last decade. Note that the baseline

18Note that all variables in this table are interactions between the RECS 2020 dummy and the indicated variable, even though
the variable labels do not explicitly show the interaction with this dummy.

19Income categories differ across RECS waves due to shifting dollar-value cutoffs. We adjust the 2009 cutoffs for inflation and
find that four of them map very closely to the $30,000, $60,000, and $100,000 cutoffs in 2020, which by coincidence correspond
closely to income quartiles.

20The results are nearly identical when we omit households whose heating equipment is less than two years old and repeat
the analysis (see online appendix C), alleviating concerns that the results are heavily influenced by the Covid pandemic.
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Table 2: Regression results: heat pump conversions in old homes

(1) (2) (3) (4) (5) (6) (7) (8)
ln(other cost) - ln(hp cost) 0.155*** 0.101***

(0.017) (0.031)

$30-59k -0.018 -0.011
(0.012) (0.012)

$60-99k -0.037** -0.015
(0.013) (0.012)

$100k+ -0.064*** -0.028*
(0.012) (0.013)

Black 0.029* -0.007
(0.014) (0.014)

Nat.Am. 0.016 0.004
(0.058) (0.055)

Asian 0.009 0.009
(0.018) (0.017)

Other 0.051* 0.008
(0.023) (0.022)

Owner -0.060*** -0.056***
(0.009) (0.009)

Rural 0.015 0.034**
(0.013) (0.012)

Northeast 0.010 0.009
(0.008) (0.008)

South 0.096*** 0.050**
(0.011) (0.019)

West 0.010 -0.018
(0.009) (0.012)

1950s 0.021 0.015
(0.012) (0.012)

1960s 0.032* 0.018
(0.013) (0.012)

1970s 0.039** 0.018
(0.013) (0.012)

1980s 0.048** 0.025
(0.015) (0.014)

1990s 0.033* 0.024
(0.015) (0.014)

2000s 0.023 0.021
(0.015) (0.015)

Observations 27307 27307 27307 27307 27307 27307 27307 27307

Note: This table presents coefficient estimates from equation (4). The sample is 2009 and 2020 RECS households whose
homes were built in 2009 or earlier. The dependent variable is an indicator for heat pump. The table only reports
coefficients on the interactions between the RECS 2020 dummy and the variables indicated in the table; main effects
are not reported here. Observations are weighted by RECS household sampling weights. Standard errors in parentheses
are robust to heteroskedasticity. Note *, **, and *** indicate statistical significance at the 5%, 1%, and 0.1% levels
respectively. Data source: RECS 2009 and 2020.
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conversion rate is 0.050 (see table 1). Thus, this association implies a conversion elasticity of 0.10/0.050 ≈ 2.

This an economically meaningful effect.

While we do not find statistically large differences in the rate of heat pump conversion by demographics

or location (controlling for energy costs), we do find large differences in conversions for other heating tech-

nologies, reflecting differences in baseline technology choices. For example, we find conversions away from

electricity for homes built in the 1960s through the 2000s and in the South, conversions toward natural gas

for homeowners and away from natural gas in rural areas, and conversions away from heating oil in the

Northeast. These other technologies are generally less responsive to energy prices. See table C.3 in the

online appendix, which reports results from linear probability models like column (8) estimated separately

for these other heating technologies.

For comparison, we run a similar set of regressions to measure heating technology choices in new homes:

hpi = β0 + δ′X + ϵi, (5)

where hpi is an indicator for heat pump and δ measures the association between covariates X and heating

technology choice. We limit our sample to 2020 RECS households whose homes were built in 2010 or later

in an effort to capture original equipment choices. Nearly 90% of respondents whose homes were built in

2010 or later report heating equipment less than 10 years old.

Table 3 reports the OLS coefficient estimates. Among new homes, heat pumps are positively associated

with energy costs for other fuels relative to heat pumps (column 1) and are less prevalent among high-income

(column 2) and Native American households (column 3). They are more prevalent in rural areas (column 5)

and much more prevalent in the South (column 6). These results contrast with those above for heat pump

conversions, which are more geographically diffuse. Things again change when we include all covariates

simultaneously. Heat pumps remain more prevalent in rural areas and less prevalent among among Native

American households, even after controlling for energy costs. But the South shrinks in importance, while

the West becomes negatively associated with adoption.

The coefficient on ln(other cost) − ln(hp cost) in column (7) implies that a doubling of energy costs for

other fuels relative to a heat pump is associated with an approximate 0.33 increase in the share of new

homes choosing heat pumps. Note that the baseline choice share is 0.22 (see table 1), implying an elasticity

of 0.33/0.22 ≈ 1.5. Thus, while the absolute change in choice share is larger for new homes, the relative

change in share (elasticity) is larger for heat pump conversions.

Meanwhile, table C.4 in the online appendix shows strong associations between the choices of other heating

technologies and energy costs, owner-occupied vs. renter, urban vs. rural, and region, even controlling

for energy costs. These associations may reflect large variation in the availability of natural gas across
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Table 3: Regression results: heat pump choices in new homes

(1) (2) (3) (4) (5) (6) (7)
ln(other cost) - ln(hp cost) 0.391*** 0.325***

(0.045) (0.075)

$30-59k -0.014 -0.025
(0.045) (0.043)

$60-99k -0.060 -0.075
(0.042) (0.041)

$100k+ -0.054 -0.050
(0.039) (0.040)

Black 0.036 -0.005
(0.045) (0.046)

Nat.Am. -0.208*** -0.231***
(0.024) (0.047)

Asian -0.049 -0.006
(0.047) (0.046)

Other -0.101 -0.081
(0.060) (0.059)

Owner 0.011 -0.026
(0.026) (0.028)

Rural 0.084** 0.073**
(0.027) (0.027)

Northeast -0.003 0.002
(0.035) (0.035)

South 0.198*** 0.056
(0.030) (0.048)

West -0.021 -0.110**
(0.029) (0.040)

Observations 1670 1670 1670 1670 1670 1670 1670

Note: This table presents coefficient estimates from equation (5). The sample is 2020 RECS households
whose homes were built in 2010 or later. The dependent variable is an indicator for heat pump. The table
reports coefficients on the variables indicated in the table. Observations are weighted by RECS household
sampling weights. Standard errors in parentheses are robust to heteroskedasticity. Note *, **, and ***
indicate statistical significance at the 5%, 1%, and 0.1% levels respectively. Data source: RECS 2020.

locations.

3.3 Summary of findings for heat pump conversions

Overall, we estimate that 5% of existing homes converted to heat pumps from 2009 to 2020. We estimate

that such conversions account for 72% of all heat pump installations since 2009. While 22% of new homes

built since 2009 rely on heat pumps, such homes account for just 8% of the housing stock in 2020. These

conversions occur in every region, among both urban and rural households, and among every income group.

We infer that these conversions are replacing natural gas, heating oil, propane, and electricity, depending
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on which of these fuels is most prevalent locally. Finally, we find evidence that these conversions are

strongly associated with the relative cost of heating via a heat pump vs. alternative fuels. In absolute

terms, technology choices are more strongly associated with energy costs in new homes. But relative to

baseline levels of adoption, conversions in old homes are equally or even more strongly associated with

energy costs.

4 Private benefits of electrification via heat pumps

In the previous section, we newly document that the flow of heat pump adoptions is mainly driven by

conversions in existing homes. We next examine the distributional implications of this trend. Our results

above show that households of every race and income category have converted thus far. Yet we might expect

uneven policy impacts going forward, as the energy cost savings from a heat pump vary widely depending

on initial heating technology and across sub-state geographies—neither of which we observe in RECS data.

Thus, to better understand the distributional implications of heat pump conversion policies going forward,

we construct a highly detailed dataset of ACS Public Use Microdata Sample (PUMS) households from 2015

to 2019. This period overlaps the latter RECS waves from which we infer conversions. We give up detailed

information on household energy consumption and home size from the RECS, but we gain substantial

precision on location (PUMA) and a vastly larger dataset of 5.9 million observations.

We calculate the annual energy-cost savings from adopting a heat pump for each of the 5.9 million house-

holds in the PUMS dataset. For accuracy, we incorporate utility-level electricity and natural gas prices and

state-level propane and heating oil prices. We impute each households’s heating demand based on observed

weather and home characteristics, given the relationship between these variables and heating demand esti-

mated from 2015 and 2020 RECS data. We compute the annual cost of heating using the current fuel vs. a

heat pump for 2015–2019 given the local efficiency (COP) for a heat pump and assuming a fixed demand for

usable heat. We then estimate savings from heat pump adoption conditional on household income, race, and

urban vs. rural status. Our main estimates do not include the fixed cost of switching, which can vary widely

across baseline technologies, and even within a PUMA. But our calculations for the energy-cost savings,

properly converted to a present value, can be compared to any hypothetical switching cost.21 An advan-

tage of using the PUMS is that it preserves correlations between heating fuel, home age, race, and income

across individual households. Aggregate data are available at a finer spatial resolution (e.g. census tract)

but lack this potentially important detail. In appendix D, we also study the savings from a hypothetical

cold-climate heat pump that meets standards set by the Department of Energy’s (DoE) Cold-Climate Heat

Pump Challenge, which is a “moonshot” type effort by the DoE to accelerate the technology.

21As a robustness check, we incorporate rough approximations for switching costs in appendix D. Our results on distributional
impacts are qualitatively unchanged.
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4.1 Household usable heat consumption

We first estimate demand for usable heat as a function of local temperature and household characteristics.

The RECS report total MMBTU used for space heating. We convert this number into usable MMBTU

using efficiency conversion factors from EIA (2017). As MMBTU is non-negative, we fit the following

Poisson regression model to RECS data from 2015 and 2020:

E[MMBTUi] = exp

(
β0 +

3∑
p=0

V∑
v=1

βp
vI(v = vintagei)HDDp

i + γ
′
Xi + Γc(i)f(i)

)
, (6)

where: HDD is heating degree days reported in the RECS survey data; Xi is a vector of household charac-

teristics, including income, total rooms, and bedrooms; and Γ is a set of fixed effects for each climate zone

c(i) and fuel type f(i). We allow a 3rd degree polynomial in HDD interacted with the home vintage to

capture historic trends in home energy efficiency, some of which may vary across climates. We estimate the

model omitting households that report using a heat pump and those reporting zero HDD.

Appendix table 8 presents the results from this estimation. We use this model to impute usable MMBTU

for each household in the PUMS for which we observe each of the variables in equation 6. Notably, this

imputation preserves correlations between income, home vintage, heating fuel, and home size.

Given imputed demand for usable heat and local energy prices, we can calculate heating cost under any

initial heating fuel (propane, heating oil, natural gas, electricity) relative to a heat pump. A heat pump does

not have a constant factor of efficiency. Rather, its efficiency depends on temperature, becoming less efficient

at temperatures below 45◦F. Thus, we calculate the average Coefficient of Performance (COP) separately

for each PUMA. We discuss these methods in online appendix B.

4.2 Distributional impact of heat pump adoption

In this section we relate heat pumps savings to income, race, and urban vs. rural status. Many states

have proposed or implemented programs to encourage heat pump adoption. Are these policies likely to be

progressive or regressive? This depends on the income of marginal adopters (i.e., those induced to adopt by

a subsidy or policy), who will tend to be the current non-adopters with the highest savings from switching

to a heat pump. We measure these savings in three ways: absolute savings equal to heating costs under the

household’s current technology minus heating costs under a heat pump; absolute savings left-censored at

zero, since the 33% of households with negative savings are unlikely to switch in any policy environment; and

censored savings divided by income, to better capture relative incidence. We interpret this latter measure

through an energy-justice lens.

For our main specification, we estimate the following regression using OLS:

savingsi = β0 +
∑

d̸=$200k+

βinc
d I(inci = d) +

∑
e ̸=white

βrace
r I(racei = r) + βruralI(rurali = 1) + θp(i) + εi, (7)
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Figure 5: Correlates of annual energy-cost savings from heat pump adoption

Note: This figure plots coefficient estimates from six OLS regressions of heat pump savings on income bins, race

categories, and rural vs. urban status. All regressions use PUMS sampling weights. The base categories are

income > $200k, “White“, and “urban”. Different marker shapes correspond to different regressions. The outcome

variable in these regressions is either absolute savings (solid markers) or savings left-censored at zero (hollow

markers), and the regressions either control for no fixed effects (circles), state fixed effects (triangles), or PUMA

fixed effects (squares). Positive signs indicate greater expected savings from heat pump adoption relative to the

base categories. Vertical lines indicate 95% confidence intervals based on clustered standard errors at the PUMA

level. Urban vs. rural status is assigned at the PUMA level. Thus, there is no estimate for “Rural” when using

PUMA fixed effects.

where savingsi is the predicted energy cost savings from adopting a heat pump for household i (or the

censored or percentage measure); inci is income bin; racei is reported race; and θp is a state or PUMA fixed

effect. We estimate equation (7) for absolute savings in levels, censored savings, and censored savings divided

by income. If the savings from heat pump adoption are progressive, the βinc coefficients will be positive and

larger in magnitude for the lower income bins (note the omitted category is $200k+). In addition to income,

we are interested in differences in savings for rural vs. urban households (βrural) and minority vs. white

households (βrace).

Figure 5 plots the results (see section D in the online appendix for corresponding table). Coefficients

using absolute energy cost savings (solid markers) indicate that heat pump adoption is progressive, with the

lowest-income households saving nearly $100 more per year than those at the high end; the pattern is smooth

and monotonic across income bins. Higher-income households use more heat, but lower-income households

save more from adopting a heat pump. This pattern holds conditional on state fixed effects (triangles) and
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PUMA fixed effects (squares), which control for local weather, energy prices, and infrastructure. Thus, even

within a PUMA, lower-income households have greater (though perhaps “less negative”) savings. Coefficients

on race are sensitive to the inclusion of fixed effects, except that Native American households save more than

white households across all models. Native Americans are more likely to live in locations served by costly

fuels like heating oil and propane, implying greater savings from a heat pump. This is reinforced by the

large and positive coefficient on rural PUMA, even after controlling for state-level fixed effects.

Our finding above that heat pump adoption is progressive may only reflect less negative savings among

low-income households, and households with negative savings are unlikely to adopt a heat pump in any case.

Thus, we repeat our analysis using censored savings (hollow markers) and find that the progressive pattern

reverses. In our preferred specification using PUMA-level fixed effects (square markers), the lowest-income

households save about $25 less per year than those at the high end. Thus, among households that would

see positive savings from adopting a heat pump, lower-income households save less. In addition to reversing

sign, the magnitude of the effect is attenuated, since households with negative savings are assigned a value

of $0 but are not dropped from estimation.

While low-income households save less in absolute terms, the effect could be different when expressed

as a percentage of income. For example, a household earning $200,000 might save $100 per year, while a

household earning $50,000 might save $50 per year. The low-income household saves less in dollars ($50) but

more as a share of income (0.1% vs. 0.05%). Thus, we repeat our analysis using censored savings divided

by income and scaled by 100 as the dependent variable. Households report a continuous measure of income,

and 3% report earning less than $5,000 per year (including many zeros). To prevent unstable estimates for

the bottom income bin, we reset these values to $5,000. Thus, our coefficient on this bin may be biased

toward zero. Figure 6 plots the results (see section D in the online appendix for corresponding table).

We again find that the results reverse. In our preferred specification using PUMA-level fixed effects (square

markers), we find that households in the second-lowest income bin save 1.1 percentage points more as a share

of their income than those at the high end. Percent savings decreases monotonically as income increases.

Thus, while censored savings in levels rises with income, there is a diminishing marginal effect, leading to a

progressive trend when savings is measured as a percent of income. Households in rural areas also save more

as a share of income.

A mass campaign to promote heat pumps via subsidies or non-pecuniary measures would primarily affect

marginal adopters. Thus, regressions using censored savings are the most relevant measure for how adoption

benefits are distributed. Households with positive savings that have not yet adopted (e.g., due to up-front

costs or lack of information) tend to be lower-income, rural, and of Native American descent. In contrast,

there is little evidence that households that have already adopted heat pumps are amassed at any particular
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Figure 6: Correlates of annual (censored) energy-cost savings as a percent of income from heat pump adoption

Note: This figure plots coefficient estimates from three OLS regressions of heat pump savings on income bins,

race categories, and rural vs. urban status. All regressions use PUMS sampling weights. The base categories are

income > $200k, “White“, and “urban”. Different marker shapes correspond to different regressions. The outcome

variable for all three regressions is censored savings (max{0, savings}) divided by income and scaled by 100. The

regressions either control for no fixed effects (circles), state fixed effects (triangles), or PUMA fixed effects (squares).

Positive signs indicate greater expected savings from heat pump adoption relative to the base categories. Vertical

lines indicate 95% confidence intervals based on clustered standard errors at the PUMA level.

part of the income distribution. While many households would not reduce energy costs by adopting a heat

pump, those that would skew low-income.

4.3 Spatial variation in heat pump savings

In this section, we explore the spatial distribution of heat pump savings to illustrate how local climate,

fuel prices, and fuel availability drive adoption benefits. We calculate the energy-cost savings for individual

households as described above. These savings depend on which fuel the household currently uses, demand

for usable heat, relative fuel prices, and the COP of a heat pump given local temperatures (see section B of

the online appendix for a map of average COP by PUMA). We then calculate the average household-level

savings for each PUMA, which is the finest spatial area available.22 Note that some households within a

PUMA can have positive savings while others can have negative savings, due to differences in their initial

22For households that report using electric heating (both heat pumps and electric resistance), we calculate savings conditional
on using electric resistance, but weight each of these observations by the share of electricity-using households with a heat pump.
We calculate these shares for each IECC climate zone and income level from the RECS. The resulting weighted-average savings
are conditional on not already having a heat pump.
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Figure 7: Annual average savings from heat pump adoption by PUMA

Note: This figure calculates the annual heating cost savings attributed to adoption of the top-selling

heat pump. It incorporates local electricity and natural gas prices, state-level heating oil and propane

prices, and weights incumbent technologies by their share in each PUMA. Usable MMBTU demand is

based on the individual household PUMS data. Households that already have a heat pump contribute

zero to the average savings. The negative extreme is the western Upper Peninsula of Michigan, which

faces high electricity prices, low natural gas prices, and is primarily fueled by natural gas with a 67%

share. The positive extreme is Sullivan and Ulster (West) Counties in New York, where nearly 67%

use propane or heating oil for heating, and electricity is relative inexpensive.

heating fuel. Heat pumps are strictly more efficient than electric resistance heating in every location. Thus,

the savings for households with electric resistance heating is always positive. Meanwhile, the savings for

households with natural gas shows a much different pattern, with negative values in California and other

places where natural gas is cheaper than electricity.23 In California, the retail price of electricity even exceeds

its the social marginal cost, working against efforts to decarbonize home heating (Borenstein and Bushnell

2018). We do not attempt to include the fixed costs of switching, which can vary widely across baseline

technologies, and even within a PUMA, but our calculations for the energy-cost savings can be compared to

any hypothetical adoption or switching cost.

Figure 7 shows our main map. Most PUMAs would see positive energy-cost savings from adopting a heat

pump, but positive savings are far from guaranteed. Some areas around the Great Lakes, the eastern Great

Plains, New York City, and Long Island would see negative savings, indicating that the current dominant

fuels are less costly than electricity, even after accounting for a heat pump’s efficiency. Meanwhile, areas near

the Rockies, lower New England, and the Appalachian mountains would see the largest positive savings. But

23See section D in the online appendix, which shows average heat pump savings by PUMA separately for households using
electricity, natural gas, heating oil, and propane. For households using electricity, savings exceed $2,500 in Fishers Island, NY
and Block Island, RI due to the local cost of electricity delivered to the island. However, less than 15% of households in these
PUMAs have electric heating. Middlesex County west of Boston, MA has the highest non-island savings of $1,844.
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there is substantial within-state and within-region variation. Savings tend to be greatest in places with cold

winters and high prices for baseline fuels relative to electricity, whether natural gas, propane, or heating oil.

Here, the overall scale of heating demand, combined with large energy-price gaps, offsets somewhat lower

COPs for heat pumps. Outside of these extremely cold areas, savings are greatest in the upper mid-Atlantic

and along the Pacific Northwestern coast. In the latter, electricity prices are very low due to an abundance

of federal hydropower projects, accentuating the potential savings (see section D of the online appendix for

a map of electricity prices by PUMA).

Average savings range from negative $772 per year on Block Island, Rhode Island to positive $690 per

year in Columbia and Greene Counties in New York. Savings are consistently positive in areas with high

heat pump penetration, such as the Southeast (see Davis (2021)). In addition to providing heat, heat pumps

also act as air conditioners, which helps explain why the Southeast has a higher adoption rate than New

England, even though the savings are lower. Recent heat pump incentive programs in New York and New

England coincide with positive savings. But this is not true in California, where electrification policy is at

the forefront but savings are low due to high prices for electricity relative to natural gas (the state’s most

common heating technology by far). The same is true for New York City and Boston, where electricity prices

are higher relative to the rest of New York and Massachussetts.

The Great Lakes and eastern Great Plains regions show negative savings due in part to lower efficiency

for heat pumps below 45◦F. However, the DoE has issued a “challenge” to manufacturers to meet higher

efficiency standards in very-low temperatures. As of January 2023, no manufacturer has met the challenge’s

efficiency standards. But would it matter if they did? To answer this question, we calculate each household’s

savings from adopting a heat pump that meets the DoE’s Cold Climate Heat Pump Challenge. As expected,

we find that the average gain in heat pump savings from this technological change is highest in the coldest

places, expanding the set of PUMAs with positive savings (see section D.2 of the online appendix).

To complement our calculations for heat pump savings, we leverage proprietary data on heat pump and

other heating-technology shipments across much of the southern United States. We find that market shares

for heat pumps are strongly negatively correlated with natural gas availability (see section D.3 of the online

appendix).

5 Conclusion

We study heat pump conversions in the United States over the last decade. We estimate a 0.05 increase

in the share of existing homes with heat pumps during 2009–2020. Our results imply that these conversions

account for roughly three-quarters of all new heat pump adoptions during 2009–2020 and one third of the

installed base in 2020. We show that these conversions are widespread, occurring throughout the income
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distribution, in both urban and rural areas, and in every region of the country. Thus, we build on previous

studies that focus exclusively on new homes or that fail to differentiate new homes from conversions.

Our empirical analysis further shows that heat pump conversions are quite sensitive to relative energy

costs, as are installations in new homes. Our measure of relative costs accounts for state variation energy

prices, household-level variation in home heating demand based on climate and home characteristics, and

the declining performance of heat pumps in cold climates. Thus, we build on previous studies that only

consider the response to energy prices. One limitation of our approach is that we are only able to identify

net conversions.

Finally, our calculations reveal large geographic dispersion in the private energy-cost savings from adopt-

ing a heat pump, driven by local energy prices and climate, ranging from negative $772 to positive $690.

Cross-sectional correlations suggest that heat pump conversions would disproportionately benefit rural ar-

eas with large shares of low-income households, who tend to rely on expensive propane, heating oil, and

electric-resistance heating. However, conditional on having positive annual savings, heat pumps savings are

regressive, with greater benefits accruing to higher-income households. Expressed as a percent as income,

low-income households (conditional on having positive savings) have larger savings from adopting a heat

pump relative to high-income households. To explore the distributional implications of technical change,

we consider a hypothetical heat pump that meets the Department of Energy’s Cold-Climate heat pump

challenge for a more efficient cold-climate heat pump. We find that this technology generates small but

meaningful savings that are broadly shared across all demographics.

Our current analysis takes electricity and natural gas prices as given. Yet it is becoming increasingly

clear that variable prices deviate substantially from private costs in many utility areas, due to inefficient

two-part tariffs and steeply increasing block-rate schedules (Borenstein and Bushnell 2018). Thus, future

research should consider distributional implications under the counterfactual assumption of efficient two-part

tariffs.
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