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Abstract

I estimate the grid impacts of 180MW of battery storage capacity operating in Cal-

ifornia during 2009-2016. I find that one megawatt of energy storage decreases evening

peak prices by up to $1.87/MWh at the pricing node where the storage is installed.

Off-peak prices increase only slightly, implying a benefit to ratepayers of $79,942 per

year. I use a Double Pooled LASSO-based estimator to uncover the unobserved net-

work structure and thereby estimate the price effects at other locations across the grid.

Overall, I find early energy storage mandates in California are only partially justified

by ratepayer benefits. These patterns likely hold in any grid setting with inelastic peak

supply relative to off-peak supply.
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1 Introduction

Since the time of Edison, the absence of economical electricity storage has raised the cost of

reliable electricity supply. Compelled to have supply equal demand at all moments in time,

utilities must invest in seldom-used generation capacity characterized by low capital costs

and high marginal costs. These “peaker” plants are called up to meet daily and seasonal

peak demand with some operating for just a few hours on a handful of days each year.

The inability to store electricity is becoming more problematic amid substantial invest-

ments in intermittent renewable generation capacity that are partly a response to federal and

state policies intended to achieve environmental and energy security objectives. By 2021,

there were more than 2.8 million household solar installations across the United States, 118

GW of utility-scale solar, and 138 GW of wind (Bloomberg Finance, 2023). This renew-

able capacity cannot be dispatched by generators or grid operators. It is, instead, governed

by sunlight or wind, which vary within days and across seasons, both predictably and un-

predictably. This intermittency imposes an additional burden upon the grid operator who

must ensure dispatchable generation meets demand net of renewable supply. Moreover, as

renewable penetration grows, it can be expected to crowd out dispatchable baseload coal and

natural gas due to its near-zero marginal costs of generation. Conventional power plants,

therefore, increasingly sit idle during much of the day and undertake costly processes to ramp

up generation to match fluctuations in renewable supply. The cost of conventional dispatch

and, hence, the value of electricity storage are growing with renewable capacity (Joskow,

2011; Gowrisankaran et al., 2016; Bushnell and Novan, 2021; Butters et al., 2021).

Though battery storage capacity grew by 3.6GW per year in 2021, reflecting $5B in annual
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investment (Bloomberg Finance, 2023; GTM Research, 2017), the impacts of batteries on

prices and costs of serving electricity load have not heretofore been empirically estimated in a

manner robust to grid congestion, market power, and alternative battery operator objectives.

Energy storage is expected to facilitate integration of intermittent renewable generation

by shifting supply from periods of abundant renewable generation to periods when it is

scarce and dispatchable generation must be called up to meet the difference in load and

renewables supply. Storage lowers peak prices by reducing the quantity of dispatchable

generation demanded during peak periods. Because most electric grids are characterized by

convex supply curves, the price reductions achieved by battery discharge at peak demand

exceed the price increases induced by the recharging of storage capacity during off-peak

periods. Such marginal price changes affect prices paid for every unit of generation because

wholesale markets are commonly settled by uniform price auctions. Batteries also lower

costs associated with grid congestion. Congestion induces sub-optimal production because

electricity trades across areas are constrained by transmission capacity. Reductions in costs of

serving electricity demand, or load, are savings to load-serving entities (LSEs) that constitute

transfers from non-marginal generators (Walawalkar et al., 2008). In states with cost-of-

service regulation, such cost savings are expected to be passed on to ratepayers. These grid

benefits are not appropriated by private storage operators, whose returns from arbitraging

high and low prices are expected to decline in storage capacity.

This paper examines the effect of storage-induced congestion relief on wholesale electricity

prices in California, one of the largest markets for energy storage in the world with over 180

MW of installed capacity as of 2016. Of this 180 MW, 120 MW is pumped hydro storage

that unexpectedly went offline in 2015 and nearly 60 MW is battery storage. Specifically,

I develop an empirical model of electricity prices that accounts for intermittent generation

and congestion. I estimate price changes using the staggered installation of 17 unique utility-

scale batteries during a period in which the battery market was maturing, but was largely
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driven by subsidies and mandates, rather than location-specific price spreads (pre-2017).

I estimate price changes for the nodes at which storage is installed and for other nodes

where prices are likely to respond because of grid spillovers. I aggregate these changes to

calculate the magnitude of grid-level congestion-relief benefits generated by marginal storage

capacity. Because the architecture of the electric grid is unobserved due to national security

considerations, I use machine learning to determine price dependencies across nodes of the

grid.

I find that a 1-megawatt (MW) increase in storage capacity reduces afternoon peak prices

by up to $1.87 in the day-ahead market, primarily in the late-afternoon and early evening,

coinciding with the period of highest electricity net demand. Meanwhile, off-peak prices

move only slightly. Thus, I estimate that the annual cost of serving load falls by $79,942 per

1 MW increase in storage capacity. This annual grid benefit from congestion relief partly

justifies storage mandates like that of California, which were estimated to cost $6,500,000

per MW of capacity (Penna et al., 2016), though costs are rapidly falling. Private benefits

from arbitrage or ancillary services range from $49,500 to $208,500 per year (Penna et al.,

2016). Thus, these grid benefits are approximately 38% to 161% of the private benefits that

accrue to battery operators.

This is the first paper to flexibly and empirically estimate price effects of storage and

its grid-level impacts in a market with congestion. As such, it contributes to two growing

areas of literature. First, it contributes to literature that explores the impacts of new grid

technology and policy on market outcomes and grid operations, focusing primarily on wind,

solar, and electric vehicle integration (Woo et al., 2011, 2016; Novan, 2015; Bushnell and

Novan, 2021; Craig et al., 2018; Wolak, 2016, 2018; Liski and Vehviläinen, 2020; Reguant,

2019; Jha and Leslie, 2019; Cicala, 2022; Petersen et al., 2022). While previous papers

(Butters et al., 2021; Karaduman, 2021) model the market equilibrium changes associated

with the addition of grid-scale batteries, and (Carson and Novan, 2013) develops a model that
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considers price changes, no previous paper has estimated the price effect of energy storage

directly as in this paper, though price effects are integral components of nearly all models

of the storage market. The engineering literature considers their market impacts using

simulation methods, focusing almost entirely on the private returns of storage investments

and the battery properties that drive potential profits (Bradbury et al., 2014; Fioravanti

et al., 2013; Nottrott et al., 2013; Walawalkar et al., 2007; Hittinger et al., 2012). Only

Sioshansi et al. (2009) considers the effect of storage on grid prices, primarily to consider

whether arbitrage opportunities are dissipated when storage is used. However, the authors

estimate the effect of energy storage on grid prices assuming a constant linear relationship

between load and prices, and do so by estimating price responses to changes in demand,

not storage capacity, limiting the robustness of results to grid characteristics like congestion.

Lueken and Apt (2014) estimate potential savings of $4 billion in the PJM grid that covers

Mid-Atlantic and Northeastern states.

Second, it contributes to the machine learning literature. It introduces a novel empirical

approach leveraging LASSO estimation to recover the market-relevant network characteris-

tics of the electricity grid when they are unreported by regulators or utilities. In doing so,

it makes an important contribution to any endeavor concerned about network effects and

congestion in energy markets, and contributes to the literature leveraging machine learning

algorithms to provide prediction or aid in identification in energy contexts (Burlig et al.,

2016; Mercadal, 2022; Cicala, 2022; Prest et al., 2023). This is useful in the context of

spatial energy markets where properties of the LASSO have real-world analogs, solving a

persistent problem in the study of wholesale electricity markets.

This paper proceeds as follows. Section 2 introduces a conceptual framework of spatial

electricity price determination. Section 3 discusses data and empirical approach. Section 4

presents empirical results. Section 5 discusses results. Section 6 concludes.
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2 Conceptual model

2.1 Electricity markets, congestion, and prices

Electricity prices are governed by two phenomena. The first is an upward-sloping, convex

supply curve defined by marginal costs that increase in quantity supplied. In an uncon-

strained competitive market, an inverse supply curve is constructed by ordering electricity

generation capacity from lowest to highest marginal cost, as is shown in Figure 1. This

“merit order” defines a supply curve that becomes steeper as quantity increases because of

generation technology and the limited frequency at which “peaker plants” are called up.

This increasing steepness leads to a large price decrease when storage is discharged during

a peak period relative to a small price increase when storage is charged during an off-peak

period. The net effect is to lower average prices even though total quantity of electricity

demand is unchanged.

Figure 1: Representative dispatch curve. The merit-order dispatch curve is generated
by ordering generators by cost. Source: Energy Information Administration

The second phenomenon governing wholesale electricity prices is congestion on the grid

caused by transmission constraints that lead to out-of-merit order dispatch. In a market with

binding congestion constraints, dispatch occurs over potentially many local supply curves,

each characterized by the inability to access lower-cost generators. In doing so, congestion

amplifies the convexity of the supply curve, where nodes with more binding congestion
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constraints face a steeper supply curve. The introduction of even a small amount of storage

capacity at one of these nodes can affect dispatch, and thus price, at other nodes.

In centrally dispatched energy markets such as those managed by the California Inde-

pendent Systems Operator (CAISO) and by PJM in the northeast and mid-atlantic states,

energy withdrawals are priced at the network node from which the withdrawals are made.

A node is a physical substation or transmission point where generators may inject power,

or load-serving entities (LSE’s) may withdraw power. Nodal prices vary spatially and tem-

porally (typically in 5 to 60 minute increments), and reflect the cost of withdrawing one

additional unit of energy at that node, and injecting one unit of energy at a reference

node.1 Nodal prices determine the revenue that generators receive and the amount paid by

LSEs. They are determined by the solutions to a constrained cost-minimization problem in

which the grid operator must secure, via a uniform price auction, sufficient generation to

meet node-level demand in every instant. The grid operator is constrained by transmission

line capacity. Prices and generation change according to a non-linear Karush-Kuhn-Tucker

(KKT) system of equations where slack conditions are on either generation constraints (e.g.

prices change as higher-cost generation is required) or transmission constraints (e.g. prices

change as lower-cost generation is unable to serve certain node-level demands) (Bohn et al.,

1984).

Constrained optimization is a common tool in the economics literature, and is frequently

used to generate equilibrium conditions and to define optimal production or consumption de-

cisions. Here, the constrained optimization is not simply a convenient model for representing

the grid. In the CAISO, network dispatch is literally determined by a numeric solution to

the constrained optimization problem run hourly by CAISO staff. Rather than a represen-

1All withdrawals must have a concurrent injection to maintain the equality between supply and with-
drawal. In practice, a withdrawal is offset by an increase in supply from a generator located on the grid,
though not necessarily at the reference node. Both withdrawal and injection are priced relative to the
reference node; the choice of reference node is arbitrary and does not affect nodal price levels.
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tation of the optimal dispatch, a constrained optimization is the dispatch process. As such,

I rely on the properties of the constrained optimization — specifically the shadow values

of constraints that directly define the “locational marginal prices” or LMP’s — to develop

intuition about the effects of storage on prices.

In this section, I develop a model of electricity pricing first under a single convex supply

curve, then under congestion in a multi-node network. The model draws a direct connection

between the physical properties of electricity transmission that determine power flow and

the constraints that determine nodal prices. I illustrate the price determination process

and the interplay of these constraints and storage with numeric examples in Appendix C.

Throughout, electricity demand is assumed to be exogenous because consumers face retail

rates that may vary with time of day but do not vary instantaneously with wholesale prices.

Nodal price is determined by the generators’ supply bids and by transmission constraints

that may preclude least-cost dispatch to serve some nodes. The effects of battery storage on

nodal prices ultimately varies by congestion status.

2.2 Generation in a Single Node Market

To illustrate these price effects, consider first an uncongested market wherein a single, fixed

set of generators serves demand. Let p(Q) ≥ 0 be the marginal cost of energy at total

quantity demanded Q. I assume the marginal cost of energy is increasing at an increasing

rate in Q, i.e.

dp

dQ
≥ 0 (1)

dp2

d2Q
≥ 0 (2)

Equation 2 is a consequence of merit-order dispatch and generator technologies, as shown
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in Figure 1. Peaking plants used to serve periods of high demand are less capital intensive,

but are less efficient and thus more expensive per unit generated.

Let E be the amount of energy a storage system transacts from the grid in an hour,

where a transaction is either a discharge to the grid or a withdrawal from the grid. Let QL

and QH be (nighttime) nadir and (daytime) peak exogenous demand, respectively, such that

QL < QH . The withdrawal of E from the grid during the off-peak period increases QL to

QL + E. The new price paid for all units of energy is p(QL + E). Similarly, QH is reduced

by E when energy storage discharges during the peak period, and p(QH −E) ≤ p(QH). Not

only is p(QH) ≥ p(QL), creating a potentially profitable private opportunity for arbitrage

(labeled C in Figure 2), but also:

dp(QH)

dQ
≥ dp(QL)

dQ
, (3)

due to convexity of the supply curve. Hence, the price changes from injection to and with-

drawal from the grid may not be symmetric. For strictly convex supply, storage lowers

marginal costs at peak more than it raises them at low demand.

While the energy storage operator profits per unit of energy stored, equal to the difference

in p(QH −E) and p(QL +E), load serving entities (LSEs) face decreases in peak prices that

are expected to outweigh increases in nadir prices. Because infra-marginal generators (e.g.

baseload generators) receive the same prices as those on the margin, batteries reduce the

price of every unit sold during peak periods and increase prices of every unit sold during the

nighttime nadir. The gain to inframarginal generators (and cost to LSEs) from nadir price

increases is depicted in area A in Figure 2, while the gain to LSEs from peak price reductions

is depicted as region B. Importantly, because the reduction in peak prices is at least weakly

greater than the increase in nadir prices and because QH > QL, peak cost savings to LSEs
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dominate nadir cost increases, i.e., area B is greater than area A.

Figure 2: Price effects of a discharge of energy from energy storage during daytime
peak and nighttime nadir times. Q is quantity of energy, and P is price. Area C is the
private benefit accruing to the energy storage operator. Area B is the surplus gained by the
LSE (load serving entity; utility) through the price effect during peak hour discharge. Area
A is the cost to the LSE through the upward price effect during off-peak hour charging

These total net benefits to LSEs are given by:

Total Benefits u QH dp(Q
H)

dQ
−QLdp(Q

L)

dQ
> 0 (4)

Thus, storage is expected to affect a net transfer from infra-marginal generators to LSEs.

Such savings to LSEs are passed onto retail electricity customers under cost-of-service regu-

lation.
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Net revenues for the battery owners are equal to C, the quantity stored multiplied by

the difference between high and low prices, and do not include the net benefits B − A.

2.3 Congestion

In a multi-node network, Kirchoff’s Law determines energy flows over each transmission line

between nodes, or “edge” in network terminology. Edges between nodes have two properties:

susceptance is the ease with which energy flows over an edge, and capacity is the maximum

amount of energy that can flow over an edge. Given two different edges between two nodes,

for example, a generation node and a withdrawal node, electricity flows in proportion to the

susceptance of the edges.2 If one edge has a susceptance of 2, and another has a susceptance

of 1, then 1
3

of the flow between nodes will flow over the edge of lower susceptance, and 2
3

will

flow over the edge of higher susceptance. If the capacity of each edge is identical, one edge

will reach capacity before the other line, inducing a transmission constraint. Even though

one edge has not reached capacity, no additional power can flow between these two example

nodes, nor between any other nodes whose flow would include the capacity-constrained edge,

in contrast to e.g. a highway network where congestion on one highway causes motorists

to reroute to another highway. Kirchoff’s law precludes choosing where electrons flow —

the flow across an electrical grids’ lines is determined entirely by the net injections and

withdrawals at each node, the susceptance of each transmission line, and the transmission

line capacity. The grid operator does not have the ability to adjust or alter the constraints

in the short term.

When a constraint binds, the only two options available to the grid operator are to either

impose a local blackout or to increase generation at another node whose path does not

include the congested line, even when this generation is higher cost. In effect, congestion

eliminates access to lower-cost generators, increasing the steepness and convexity of the local

2The inverse of susceptance, resistance is sometimes used in power flow modeling
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inverse supply curve at congested nodes. The marginal cost differential between the lowest

cost generator available to serve a given node and the lowest cost generator available at a

reference node defines the congestion cost of electricity at the given node.

2.4 Generation and Congestion Constraints as KKT

The grid operator chooses only the vector of generation to dispatch, GGG, which represents the

generation authorized to operate over N grid nodes indexed by n. The operator chooses GGG

to minimize the cost of serving load subject to transmission and generation constraints:

min
Gn

N∑
n=1

pn(Gn)Gn (5)

s.t.
N∑
n=1

Dn =
N∑
n=1

Gn (6)

κκκ× [G−D] ≤ K̄ (7)

Here, pn(Gn) are bids placed by generators for each time period stating the quantity and

price at which they are willing to supply electricity at node n. Equation 5 is the total cost

of serving load. Equation 6 states that the total amount generated must equal the total

amount demanded, summed across all nodes Dn. In equation 7, K̄ is the vector of capacities

of the E lines that form the transmission and distribution network. G−D is the generation

(net of same-node demand) for each node n, and κκκ is the [E x N] shift factor matrix that

summarizes power flow over edges e between nodes n (see Appendix C for power flow model

definitions, details, and illustrative examples).

The grid operator determines GGG by solving the Lagrangian where λ is the shadow value

of relaxing the system-wide power flow constraint by one unit, and µ is a vector of length E

that contains the shadow value of relaxing the transmission constraint for each edge e:
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L = −
N∑
n=1

pn(Gn)Gn +

System-wide power flow constraint︷ ︸︸ ︷
λ(0−

N∑
n=1

Gn −
N∑
n=1

Dn) −µµµ(K̄ − κκκ× [G−DG−DG−D])︸ ︷︷ ︸
line flow (slack) constraints

, (8)

(9)

In an uncongested market when no transmission constraints are binding, the solution

implies values of 0 for every µe. Then, price is determined by λ and is equal to the bid price

of the marginal generator in the uncongested merit order.

In a congested market, one or more constraints in equation 7 bind. As a solution to the

KKT system of equations with slack conditions, some values of µµµ 6= 0 and congestion prices

are composed of the product of the shadow value of the constraint and the flow implied by

the shift factor matrix µµµκκκ. Nodes that share edges would similarly share congestion prices

according to the flow that each node would cause over e.3

The effect of storage on prices is decomposed by equation 8 into changes in λ and changes

to elements of µµµ. The size of any storage relative to
∑N

n=1 Gn is small as the latter is the

sum of all demand in CAISO territory, and batteries are of limited size. A change in storage

is unlikely to change the marginal generator and effects on λ would, in practice, be nearly

impossible to detect. In contrast, slack conditions defining elements of µµµ can switch between

non-zero and 0 with even small storage additions, as illustrated in Appendix C. In the

empirical application, I focus on the effect of storage on µµµ, which defines the change in

congestion price, while controlling for the empirical analog of λ, the system price.

This relationship between price differences on the grid and transmission constraints is

critical to the empirical strategy of this paper. As storage discharges, changes in net load at

a node will affect prices at other nodes based on shift factors and transmission constraints.

3See Appendix C for example calculations of congestion price.
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Estimation of price effects requires a specification that (1) accounts for the unobserved,

underlying dependence on the shift matrix, and (2) admits the inequality constraints on

transmission which frequently equal zero during uncongested times. In brief, the data gen-

erating process is a weighted sum of constraints where the constraints are non-linear and

frequently zero, and the weights are unobserved. This estimation problem is, at its heart,

one of variable selection. When µe 6= 0 for some edge d, storage at one node will affect some

other nodes, but not all. A natural tool, then, is the LASSO estimator. This estimation

strategy is discussed further in Section 3.1.

2.5 Other Determinants of Price

In equation 8, I abstract away from other factors that enter the price determination process.

Dynamic constraints on grid operation also restrict the ability of low-cost generation to serve

load over short time periods. For instance, fixed startup costs may preclude a lower-cost

plant from being dispatched for a short period of time in favor of a more expensive plant

that can be dispatched quickly (Hogan and Ring, 2003). Or, a lower-cost plant may not be

capable (due to design limitations) of ramping quickly to meet demand (Bohn et al., 1984).

Locational market power may also lead to increased convexity of the supply curve, and

thus greater price decreases with the introduction of storage. Binding congestion constraints

effectively “island” a generator into its own market and provide an incentive for a generator

to shade bids upwards when the operator expects to face little or no competition due to

transmission constraints (Mercadal, 2022). Dynamic constraints may also allow for exercises

of market power (Reguant, 2014; Jha and Leslie, 2019). Storage may relieve these constraints

by providing short-term supply, smoothing demand and allowing the grid optimization to

select lower-cost plants. In this manner, storage may affect prices well outside of the periods

in which it discharges or is expected to discharge.

Price decreases owing to storage are estimated in this paper, but no attempt is made to
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apportion the shares of estimated price decreases amongst relief of dynamic constraints or

locational market power. This matter is left for subsequent work, noting that the overall

total price effect of storage is the important figure in the context of this paper.

3 Data and Methods

I estimate price effects of a marginal unit of storage capacity separately for the node at which

the battery unit is installed and for all other nodes at which prices are affected by the battery

unit. This approach is motivated by the unobserved nature of the grid. Cross-node effects

depend upon unobserved network links; own node effects are defined by an assumed link

between storage and the most proximal node. The own node effect is estimated in a panel

regression that pools all storage units in order to maximize statistical power. Cross-node

effects are estimated separately via LASSO, sacrificing power for flexible modeling of the

network. It would be computationally infeasible to instead estimate cross-node effects in a

pooled regression with each storage node and its interactions entering as independent vari-

ables. Doing so would ignore the sparse nature of network congestion prices that result from

the KKT slack conditions presented in Section 2. The method is closest to that of Bushnell

and Novan (2021), who estimate the effect of solar generation on the avarege hourly whole-

sale electricity price in CAISO, which primarily consists of the value of the total generation

constraint λ in equation 6. In contrast, in addition to studying storage rather than solar, I

study prices at 757 pricing nodes separately and disentangle own- and cross-node effects.

3.1 Own-node price effects

The per-MW price effect of energy storage is estimated at the node level within the CAISO

network using hourly day-ahead prices. These prices are regressed on node-specific, time-

varying energy storage capacity, yielding an estimate of the associated effect of storage
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capacity on prices. Unique coefficients are estimated by hour of the day and by season,

admitting distinct charge and discharge behavior. Because electricity consumers do not face

prices that instantaneously vary with marginal cost, demand is assumed to be exogenous.

Specifically, price effects at the local node are estimated by:

λnt = β1λ
LAP
t +

4∑
s=1

24∑
h=1

βhsESnt ×HOURh × SEASONs + θ1
nw

1
nt + θ2

nhw
2
nt+

N∑
n=1

2017∑
y=2009

4∑
s=1

24∑
h=1

1∑
w=0

δnhsyw×NODEn×Y EARy×SEASONs×HOURh×WEEKDAYw+εnt,

(10)

where λnt is hourly (total) marginal price at node n and time t; ESnt is contemporaneous MW

of installed storage capacity at the node; w1
nt consists of measures of local solar generation

and local relative temperature,4 both of which vary by day and by hour; w2
nt consists of

an indicator for the Aliso Canyon blowout,5 and the 12-month rolling average precipitation,

which may differentially affect nodal prices through hydropower supply. δnhsyw are fixed

effects for each node n, hour of the day h, quarter (season) of the year s, year of the sample

y, and weekday/weekend w respectively; and λLAPt is a weighted average of prices at nodes

other than n within the corresponding utility territory known as a Load Aggregation Point

(LAP).6 This term controls for the shadow value of the total generation constraint in equation

6, which focuses identification on congestion effects. The term also controls for any trends

4Local solar generation is measured as the product of solar capacity multiplied by the hourly solar
irradiance in the territory of node n; local relative temperature is measured as the difference between the
hourly temperature in node n and the leave-one-out average temperature

5The Southern California Gas-operated Aliso Canyon natural gas storage facility failed in Fall of 2015,
limiting gas storage for Southern California. This supply chain interruption affects the marginal cost of all
gas plants in the region, which in turn affects electricity prices in the region.

6I follow the energy literature and refer to λn as the nodal price. It is the sum of both the total generation
constraint λ (common across all N nodes) in equation 6 plus the sum of the transmission constraints that
affect node n.
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that may occur during the season in which storage is commissioned. Interest centers on βhs,

the season and hour-specific coefficients on energy storage capacity that reflects the change

in node price due to a one MW change in storage capacity.

Due to the saturation of fixed effects, identifying variation comes from node-level variation

in storage capacity for a given node and hour within a specific 3-month interval. The

identifying assumption of equation 10 is that deviations from the node-hour-season-year

average price, conditional on LAP prices, are uncorrelated with any omitted variables that

correlate with the quantity of energy storage located at the node. Even node-specific trends,

for instance, only confound if they introduce dynamics across three-month seasons during

which storage is introduced.

Using this rich set of fixed effects limits identifying variation to a very fine window within

the node-hour-season-year. With few exceptions, storage generally increases only once at

each node. Therefore, coefficients that vary by season will only capture the effect within the

hour-season-year of each increase in storage, while the fixed effects will absorb all variation

in subsequent node-hour-season-years. While this improves internal validity, it comes at the

cost of understanding the longer run effects of storage.

3.2 Cross-Node Price Effects

Estimating the effect of energy storage on congestion pricing at other nodes requires knowl-

edge about the characteristics of the network of generators and transmission lines. Network

topology is not published by regulators, utilities, or grid operators because of grid security

concerns. Hence, the network is unobservable to the econometrician. In order to recover

market-relevant characteristics, I borrow an identification strategy from the Research and

Development (R&D) literature that leverages a multi-step Double Pooled LASSO estimator
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to uncover the structures of unobserved networks Manresa (2016).7 If one takes any two

nodes on the electric grid, then storage at one node will affect price at another if and only

if (1) the two nodes share at least one non-zero shift matrix entry, and (2) the transmission

constraint on that shared shift matrix entry has a non-zero shadow value (i.e. the constraint

is binding) during some hour and season. Because the shift factor matrix and the trans-

mission constraints of the electric grid are unobserved, and because the shadow values of

transmission constraints (µ in Section 2) are, by definition, either zero or large, the LASSO

estimator is an intuitive choice to uncover the relevant non-zero cross-node effects. In effect,

the LASSO’s “zeroing” property, resulting from the absolute value check function, captures

the KKT slack conditions (non-zero when binding) that define shared constraints.

Cross-node effects are estimated by:

λnt = λLAPt +
4∑
s=1

24∑
h=1

βhsESnt ×HRt × SEASONs + θ1
nw

1
nt + θ2

nhw
2
nt

NES∑
i 6=n

γinhsESnt ×HRh × SEASONs + δnhs + ηy + εnt, (11)

where λnt is the nodal price, λLAPt is the utility-level price as before, and {θ1
n, θ

2
nh} is the

marginal price effect of wnt = {w1
nt, w

2
nt}, which is comprised as in 10 of temperature and

precipitation covariates, local (within node) hourly solar generation, and a dummy indicator

for the Aliso Canyon blowout. Variables in wnt are potential confounders that are included

to avoid omitted variables bias and improve precision. Specifically, if storage is located in an

area characterized by more frequent temperature spikes, then omitting these variables will

attribute their effect to storage, biasing the coefficient of interest. Parameters of interest

are the non-zero entries in γinhs which represent cross-node price effects: the effect of 1MW

7In Manresa (2016), the method is used to identify R&D linkages across technology firms to estimate
spillover effects.
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of storage at node n on prices at node i.8 A LASSO algorithm is used to identify non-zero

entries in γinhs.

Estimating equation 11 by LASSO presents an additional source of potential omitted

variables bias best characterized as model selection omitted variables bias (Belloni et al.,

2012, 2014a,b). To obtain unbiased estimates of both the non-zero entries in γinhs and the

magnitude of the cross-node price effect, I use the Double Pooled LASSO introduced in

Manresa (2016), which leverages the “partialling out” method of Belloni et al. (2012) to

address this bias. I discuss the issue further and detail the operationalization of the Double

Pooled LASSO in Appendix E. In brief, the Double Pooled LASSO is estimated over three

stages: the first stage generates values of λnt and wnt that are orthogonal to ESnt in Equation

11. The second stage uses these versions of λnt and wnt to estimate θn, then residualizes

λ̂nt = λnt − θ̂nwnt. In the third stage, LASSO is used with equation 11, replacing λnt with

λ̂nt, resolving the potential for model selection omitted variables bias. Finally, with non-zero

entries in γinhs identified, OLS is used to estimate parameters.

3.3 Data

Estimating the effects of energy storage on nodal prices requires three main datasets. The

nodal prices themselves, the location and commissioning date of energy storage, and finally,

data to control for potentially confounding factors that may affect nodal electricity prices,

such as temperature, precipitation, or the price of natural gas. This section describes the

data sources in detail.

Commercial energy storage capacity in the CAISO area between 2009 and 2017 is ob-

served in the U.S. Department of Energy’s (DoE) Global Energy Storage (GS) Database (U.S.

Department of Energy, 2016). During the study period, a total of 180MW of energy storage

was brought online or went offline, equivalent to approximately .4% of the average peak daily

8I use i to index all pricing nodes and n to index storage nodes. All storage nodes are also pricing nodes.
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Figure 3: (a) Energy storage capacity added during study period. Totals do not
include storage introduced before September 2009. Note indicates date on which 120MW of
Pumped Hydro was taken offline due to unexpected fire. (b) Energy storage locations
in CAISO territory. Source: Dept. of Energy Global Energy Storage database.

(a) (b)

load. The DoE GS database contains the commissioning date, storage size (MWh), discharge

capacity (MW), owner, purpose, and geographic coordinates for every unit. I remove any

unit whose purpose is related to emergency backup or other non-arbitrage applications, as

these are unlikely to engage in regular discharges. I also exclude batteries 500kW of capacity

and less. This yields 20 unique storage capacity additions to the CAISO service area as

two storage sites receive multiple storage capacity additions. Figure 3a shows the timing

and locations of storage installations in California. Storage installations are concentrated in

urban areas, likely to exploit local congestion-related price spikes. Capacity also exists in

rural areas, and some capacity is located near utility-scale renewables.

I obtain Locational Marginal Prices (LMPs), λnt, for the day ahead market using the

CAISO OASIS data portal for the period September 1, 2009 to December 31, 20169. As

9http://oasis.caiso.com
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Figure 4: Example of spatio-temporal variation in hourly nodal price ($/MW),
λn. Note the “hot-spot” of congestion in the Northwest portion of the state which is greatest
during the lower-right panel, 6pm on July 20, 2016. Red outlined polygons indicate storage
nodes.
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shown in Figure 5, seasonal average LMPs exhibit expected patterns—daily peaks occur

during the hours of 5-9pm, and some seasons also exhibit a smaller morning peak. These

peaks show the potential for arbitrage using energy storage. I also obtain each of the three

Default Load Aggregation Point (DLAP) prices, one for each major investor-owned LSE

in California. Figure 4 shows spatial variation in nodal prices for select hours and select

seasons. Note that these prices differ from CAISO system price, as nodal prices include

congestion whereas the CAISO system price does not.

When necessary for calculating changes in cost of serving load, hourly energy with-

drawals at each node are imputed as the product of hourly total demand for each utility and

respective, static Load Distribution Factors (LDFs) that report the share of utility demand

withdrawn at each node. Utility demand and LDFs are reported by CAISO.

I derive the physical location of each CAISO node from OASIS maps using a data scraping

algorithm. The scraped location is not exact. Department of Homeland Security standards

for information disclosure of “critical infrastructure” generally forbid disseminating informa-

tion on electricity grid infrastructure. While reported node locations are not precise, they

nevertheless appear to correspond to locations at which Google satellite imagery depicts

large electricity substations. I assign each energy storage unit in the GS database to the

nearest node and DLAP. Error in the assignment may introduce bias through measurement

error, biasing estimates towards zero. The magnitude of this attenuation is likely to be

small, however, because nearby nodal prices are highly correlated. Nodes are clustered by

name 10 and proximity to form aggregate clusters of nodes and energy storage. Proximity

is determined by both physical distance and price path similarity. These clusters are called

“nodes” throughout this paper. Polygons are generated around each node containing all

spatial points that are closest in proximity to that node.

10Plants consisting of multiple generators will often have sequential naming e.g. ALAMT 1, ALAMT 2,
etc., which are grouped here
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Figure 5: Hourly Nodal Price ($), λn, by Season; 95% CI

●
●

● ●
●

●

●

●

●
● ● ●

● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

● ●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

● ●
●

●

●
●

● ● ● ● ● ● ●
●

●

●
●

●

●

●

●

●

Jul−Sep Oct−Dec

Jan−Mar Apr−Jun

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

25

50

75

100

0

25

50

75

100

Hour of day

N
od

al
 P

ric
e

23



I then construct a proxy of local solar generation. First, I obtain hourly Global Hori-

zontal Irradiance (GHI) measurements for the centroid of each polygon from the National

Renewable Energy Laboratory’s (NREL) National Solar Radiation Database (NSRDB) (Na-

tional Renewable Energy Laboratory, 2018). Combined with a physical solar model such as

NREL’s System Advisory Model (SAM) and data on a system’s tilt, azimuth, and inverter,

it is possible to convert GHI to electricity generated as in Craig et al. (2018). Conditional

on solar capacity, solar generation is proportional to GHI.

To create a node-level measure of local solar generation, daily solar capacity within each

polygon is combined with each polygon’s GHI measure and standardized. Locations and

installation dates of household solar are extracted from the California Solar Initiative (CSI)

database (California Solar Initiative, 2018) and interpolated across each zip code as exact

coordinates are not available in the CSI. Utility-scale solar generation dominates distributed

generation in California by more than 2:1. I use the EPA eGrid database to find the location,

capacity, and commission date of each utility-scale solar facility in the CAMX eGrid sub-

region that contains the CAISO territory, and match each to the nearest node. An hourly

time series of total installed solar capacity is generated for each polygon and multiplied

by hourly GHI. The resulting standardized measure represents within-node hourly solar

generation.

3.4 Selection of Storage Sites

While an ideal experiment would place storage at randomly selected nodes and measure the

change in prices with a causal interpretation, it is not feasible to allocate storage randomly.

The DoE GS database consists entirely of batteries that are sited according to unobserved

objectives — in the early stage of the battery storage industry studied here, arbitrage profits

are not the sole objective maximized. Rather, storage owners may also have considered the

accessibility of the storage for monitoring, the cost and space constraints for adding large
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(semi-truck trailer sized) equipment at a node, or other considerations. The post-2017 boom

in storage installed on the grid marked the beginning of the mature phase of energy storage

in California, while pre-2017 storage marked a time when storage capacity installed was

geared towards proof-of-scalability rather than towards optimal location. By limiting the

study period to periods prior to 2017, I leverage a set of energy storage installations that

were sited according to constraints that are largely orthogonal to confounders. Of specific

concern would be siting decisions that are correlated with unobserved, time-varying price

trends.

The main concern is that storage operators chose sites that are correlated with either the

outcome or time-varying trends in the outcome. The rich set of fixed effects in equation 10

controls for unobserved, time-persistent differences in hourly nodal prices. However, time-

varying unobservables that both (1) make a node more attractive to storage operators, and

(2) influence the nodal price over time conditional on the fixed effects would still present an

endogeneity issue. Notably, the vast majority of storage in the GS dataset is privately owned

and operated. To the extent that the siting decision is correlated with prices, it is most likely

that the price spread, which determines the potential for arbitrage, is the main concern. In

particular, storage may have been sited at nodes with price spreads that were likely to

increase through higher peak LMPs. Because nighttime prices are largely uncongested and

follow a single grid-wide price, an increase in the price spread at a particular node can only

follow from an increase in peak congestion at that node. If storage were sited at nodes that

would have had higher peak prices and higher spreads absent storage, then the estimates of

the price effect of storage are biased (upward) towards zero.

Tests for selection on observable intra-day price patterns and trends are shown in Ap-

pendix B. Intra-day price spreads prior to the study period are not sigificant correlates to

selection as a storage site, suggesting that sites selected in the data are not sites with partic-

ularly large price spreads. Taking a dynamic approach, I test for trends in daily price spread
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prior to installation of storage and find no difference in the pre-installation price spread trend

for storage sites relative to non-storage sites.

Both the selection of storage sites using price trends and the selection of storage sites

using unobserved price response would result in an average treatment effect that is upwardly

biased toward zero. Therefore, I interpret the results as an upper-bound (or a lower-bound

in magnitude) on the effect of storage.

4 Effects of Energy Storage on Nodal Prices

4.1 Own-node Effects

Point estimates of βhs in equation (10) and their 95% confidence intervals are plotted in

Figure 6. Driscoll-Kraay standard errors (Driscoll and Kraay, 1998) are two-way clustered at

the node and hour-of-sample. Results for Spring (April-June) are noisy, but point estimates

are largely negative during peak (afternoon) periods. When afternoon demand is highest

on the CAISO grid, storage effects are statistically significant and reach as much as -$1.87

at the 6pm hour. During the 6pm-10pm shoulder hours, effects range from -$1.87 to -$1.37

at 10pm. These are precisely the hours in which declining solar generation coincides with

increases in energy demand, forming the “duck curve.” Effects for all hours are negative and

nearly all significant. While theory predicts weakly increasing prices during off-peak times,

the magnitudes of the off-peak effects are small. Lower prices may be a result of dynamics in

the dispatch process where high-cost peak generation is avoided during peak times, allowing

lower-cost generation to serve from on-peak into off-peak. In summer (July-September),

when theory posits the price effect will be most pronounced because of high demand and

the convexity of the supply curve, price effects are smaller, with a maximum price decline

of -$0.26 for the 4pm and 8pm hours, which coincide with the highest-priced hours during

summer as shown in Figure 5.

26



The January-March effects are largely small but positive and significant. Average price

and quantity demanded are smaller during this season, though the overall effect is positive. In

October-December, storage shows nearly no effect. Overall, effects are focused on afternoons

in spring and summer, broadly consistent with the theory in section 2.

Coefficients for hours usually considered “off-peak” are close to zero or statistically in-

significant, consistent with markets clearing at a flat and uncongested region of supply curves.

Point estimates for the early morning nadir hours are small but positive in January-March

and October-December, in line with the theory presented in Section 2. However, negative

effects in the early morning hours in April-June contradict the theory model. While it is

feasible that changes in dispatch resulting from the presence of energy storage on a node may

alter dispatch at other hours, it is an unlikely explanation for these results. While estimates

may be somewhat noisy, the afternoon pattern of the storage price effect holds, even if only

relative to the early-morning price effects seen in April-June.
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Figure 6: Coefficient Estimates: Equation 10 with 95% CI, by Season and Hour. Includes
node x season x hour x weekend FE. Driscoll-Kraay standard errors shown.

Lower hourly nodal prices benefit LSEs and, ultimately, ratepayers by reducing the cost of

serving load. To estimate the magnitude of these total savings from a MW storage capacity,

denoted TS, I multiply the point estimates in Figure 6 with the observed price at each node

in each hour of sample, the total load withdrawn at that node, and the total amount of

energy storage located at the node:

TS =
D∑
d=1

N∑
n=1

H∑
h=1

βhs × ESdn × λn × LOADhd.

where βhs is the price change estimated in equation 10, and d is the day-of-sample. Total load

withdrawn at each node is not reported, though total grid load is reported. To calculate

node-level load, I multiply total grid load LOADhd by load distribution factors λn (the

share of total load served, on average, by each node) to calculate hourly load at each node.
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Calculations for total change in cost of serving load are described in appendix D and defined

in equation 16.

The total own-node savings for the entire study period (2009-2016) is $36.5 million. The

effects of storage on load-serving costs are greatest in the second and third quarters of the

year—not only because point estimates are largest, but also because load is greatest during

these hours and seasons. Because each energy storage installation is introduced on a different

day of the sample (see figure 3a), I calculate an average total savings per hour, per megawatt

of storage (“capacity-hour”). I divide the total benefits of energy storage by the total number

of MW of capacity-hours on the grid to generate a public benefit (reduced cost of serving

load) of $7.02 per MW of capacity per hour on grid.

Over one year (8,760 hours), the annual own-node benefit of 1MW of energy storage is

$7.02× 8, 760 = $61, 514. For perspective, a Tesla Powerwall, the most widely-known brand

of behind-the-meter energy storage, has a capacity of 2kW, or .002MW, yielding cost savings

from own-node changes of $123.02 per year.
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Figure 7: Aggregated own-node inframarginal effects of all storage over study
period.

Another way to compare ratepayer benefits is to state them as a fraction of the private

benefits that can be gained from daily arbitrage of prices. This is of particular importance

for understanding the magnitude of ratepayer benefits not captured by private operators. A

high amount of unappropriated (public) benefit justifies mandates or subsidies, as are used

in California. Arbitrage opportunities decline in storage capacity though ratepayer benefits

of storage do not. Hence, internalizing the effect may become increasingly important.

An exact determination of private revenues from arbitrage requires information about

daily battery charge and discharge, which is not publicly available data. However, private

revenues for one pilot storage project in California are reported in Penna et al. (2016), which

estimates private revenues between $49,500 and $208,500 per MW of storage per year. Hence,

the storage benefits accruing to ratepayers (and not captured by the operator) of $61,514

amount to 29-124% of these private revenues.
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4.2 Cross-node Effects

Results from estimating Equation 17 are plotted in Figure 8. Each cell represents a count of

non-zero coefficient from Γhs, a cross-node price response to a MW of storage at another node

linked through the network identified by the LASSO estimator. Confidence intervals are not

included for visual clarity, however, only statistically significant coefficients are included.

Most estimates are significant at the 5% level, a result not surprising given the LASSO

method used to select non-zero effects. In the final stage of estimation, each node is estimated

separately. This sacrifices some precision that would be gained from pooling across nodes,

but gains flexibility in estimating Γhs.

Figure 8: Cross-node effects. Each cell count represents a statistically significant (at 5%)
entry in Γhs, and is the coefficient representing the change in one node’s price at hour h,
season s, resulting from a 1MW increase in storage at another node.

While the overall mass of points is negative, a considerable number of positive points

appear. This is an expected ramification of the nature of congestion in the network. When

congestion binds, the congested region has higher prices as it cannot access lower-cost gen-
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eration. However, on the non-congested side, prices are lower as fewer areas can be served

by generation in the uncongested area.11 Reducing congestion allows prices to equilibrate,

lowering them on the congested side but increasing them in the uncongested side, lowering

the overall cost of serving load.

The spring season (April-June) and the summer season (July-September), hypothesized

to be the periods when congestion costs would be highest and thus storage would exhibit the

greatest effect, contain the most non-zero coefficients. In both, a mass of negative coefficients

are observed in the evening hours (8-11pm). Furthermore, a mass of coefficients are negative

in April-June during the morning hours, when ramping for the morning peak would begin.

The positive effects in some hours represent a smaller positive change (on a lower quantity)

than the afternoon on-peak effects. This is consistent with the effects hypothesized in Section

2. Some negative effects are observed during morning hours in October-December, and

during the evening hours during January-March. Note that Figure 5 shows a second daily

peak occurring during the morning in October-December. This morning price peak occurs

as households rise to prepare for their day during the colder, darker fall mornings.

Nodes designated by the LASSO estimation as linked during some hour and season

(γinhs ∈ LLASSO) may not necessarily be spatially contiguous as transmission and distri-

bution infrastructure is not a perfect lattice. However, linked nodes should be close. For

example, it is unlikely that a node in San Diego influences prices at the northern border of

California. Select linked nodes are depicted in Figure 9. As these figures show, linked nodes

are generally nearby, lending validity to the LASSO selection procedure. However, distant

nodes are not entirely eliminated. Appendix Figure A.1 plots the density of all selected

storage node effects (Γrs) by distance between pricing and storage nodes. Although some

storage nodes lying far from the pricing node are selected, the larger mass of points selected

11In terms of the model in section 2, the shift factor matrix for some nodes may have negative entries,
which translates to a lower price for energy withdrawn when that withdrawal relaxes the constraint.
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lies within 100 km, and distant nodes tend to exhibit variance in sign, suggesting selection

is subject to noise.

Figure 9: Examples of cross-node effects. Polygon in yellow represents site of storage node.
(Left) storage in Long Beach, CA. (Middle) storage in Torey Pines, CA. (Right) storage in
Vacaville, CA.

These cross-node results indicate that price effects of energy storage extend beyond the

capacity node to other nodes in the network. The sign of these effects is predominantly

negative. When aggregated, cross-node effects generate total savings (e.g. decreases in cost

of serving load) of approximately $10,937,431, or approximately 23% of the total benefits

realized at the own-node. This is approximately 9% to 37% of private revenues. Cross-node

effects are heterogeneous across the 18 storage installations. In some areas, effects are con-

centrated in the area around the location of storage as in Figure 9 (left and middle). In

others, effects appear to be widespread across a region as in Figure 9 (right). This hetero-

geneity highlights the importance of considering the local network topology and congestion

patterns in calculating the benefits of energy storage to ratepayers.

4.3 Total Cost of Serving Load

Figure 10 shows the season-by-hour aggregated effects. Values represent the change in the

total cost of serving load over the entire study period 2009-2016. Small positive amounts are
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show in the first quarter, while the vast majority of savings occurs in the second and third

quarters, representing the spring and summer months.

Figure 10: Aggregated own- and cross-node effects of all storage over study period

5 Discussion

Ratepayers benefit from storage when the cost of serving load decreases, as is the case

with storage own-node and cross-node effects. These ratepayer benefits represent transfers

from inframarginal generators, and do not necessarily represent increases in social surplus.

However, since the costs of storage are mandated by law, ratepayers ultimately pay for

storage through rate regulation. Thus, it is important to consider the magnitude of the

transfer on a distributional basis, asking “do ratepayers recover in transfers an amount that

justifies the cost?”

Ratepayer benefits from own-node price responses are estimated to be $61,514/MW per

year, and cross-node benefits are 23% of that amount, $18,428/MW per year, totalling
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$79,942 per MW of capacity, per year. The average ratepayer benefit is $9.13 per hour.

While the price of battery installations is falling rapidly, estimates from 2016 for the full

installation and connection cost in California are around $6.5M per installed MW of storage

capacity. Arbitraging energy prices in CAISO energy or participating in the ancillary services

market generates private revenues of $45,500 to $208,500 per year, per MW (Penna et al.,

2016).

Standing on their own or in tandem, the total public and private benefits from energy

storage only partially justify the estimated cost of storage in 2016. Mandates such as AB

2514 can potentially still be justified by learning spillovers and first-mover advantage, and

California has historically been a first-mover in renewable and low-carbon energy policy.

This paper estimates only the ratepayer benefits, draws assumptions on private benefits and

storage cost from published reports, and does not seek to quantify other tangible economic

benefits. This is largely because costs of batteries are declining rapidly, with large-scale

installations falling below $1,000,000 per MW in 2022, less than one-sixth of the reported

2016 price (Lambert, 2018; Viswanathan et al.).

5.1 Ratepayer Benefits Relative to Private Benefits

It is important to consider the economic incentives present in a low-cost storage world. If

storage acts as any other generation asset, then investment in storage will be driven by the

private marginal benefits. Private investors will not consider the ratepayer benefits that

cannot be captured. In fact, higher ratepayer benefits will decrease private revenues as the

magnitude of the diurnal arbitrage opportunities (peak prices) are reduced. Therefore, a

fiscal public goods problem arises, and a policy intervention is necessary to ensure that the

ratepayer benefits are accounted for in the investment decision.

To this end, I calculate the ratepayer benefits as a fraction of the total private benefits

from arbitrage. If ratepayer benefits are large relative to private benefits, then policy in-
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tervention may be justified. If the benefits are small relative to private benefits, then the

unsubsidized outcome will result only in storage that can be justified by private benefits,

and no policy is necessary.

Results show that ratepayer benefits are a significant portion of benefits from storage.

Own-node effects total 29-124% of the total private benefits from arbitrage, and cross-node

effects total another 9-37%, summing to 38%-161%. Therefore, ratepayers gain a consider-

able portion of total overall benefits from storage operation, possibly even exceeding private

benefits. These gains are distributional, as they come as a transfer from incumbent in-

framarginal generators who would otherwise have received a higher market-clearing price.

These reduction in the cost of serving load, not captured by private storage operators, justify

policy on distributional grounds, but not economic grounds, if they are greater than the cost

of storage. In short, if the transfer to ratepayers plus the private arbitrage profits do not

exceed the cost of storage, then even a distributional policy preference does not justify a

mandate.

The magnitude of public ratepayer benefits relative to private benefits highlight the

importance of rate regulation as well. Under pass-through utility regulation, savings in the

cost of serving load are passed on to ratepayers. This paper does not examine the underlying

assumption, but acknowledges that the intent of a policy and the implementation of that

policy may differ dramatically. In California, the California Public Utilities Commission

examines all rate change requests, and receives input from ratepayer advocates in determining

its approval of a rate change. When storage is necessary to avoid or delay a local distribution

line upgrade (i.e. to lower costs associated with local congestion costs), the utility-borne costs

may be included in a ratepayer’s billed distribution charge (Bierman, 2018). Under these

conditions, it is important to understand the ratepayer benefits, as the ratepayer is bearing

the capital costs.
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5.2 Relevance to Other Grids

California has historically been a first-mover in renewable and low-carbon energy policy,

and retains this position in mandating storage under AB2514. California’s experience with

energy storage provides insight for other states and grid operators that may consider the

role of storage in grid operations. The effects measured in this paper pertain to local nodal

prices relative to a system-wide average LAP; therefore, grids with little congestion may

be unlikely to see similar effects, even with a proportionally equivalent amount of storage.

Historically, California has seen higher than average congestion costs, with the New York

ISO (NYISO) having the highest average ratepayer cost of congestion (Lesieutre and Eto,

2003). Comparison across grids is hampered by variation in how congestion is priced and

measured. However, California’s congestion costs are driven in part by internal, branch group

(e.g. intra-distribution level) congestion, or congestion resulting from insufficient capacity

on the smaller distribution grid, rather than exclusively by constraints on larger high-voltage

regional transmission lines (DOE, 2015). For example, the spatial distribution of “hot spots”

in Figure 4 illustrates this issue in the Northwest corner of the state during summer peak

hours. Figure 4 also illustrates the larger transmission-level congestion constraints — the

lower-right panel shows a clear gradient between the Southern and Central regions around

34◦N. This transmission-level congestion has persisted for years in the CAISO. Note that,

in this figure, the local “hot-spot” in the Northwest corner is of greater magnitude than

the longstanding South-Central gradient, although the Northwest “hot-spot” is in far fewer

nodes, and covers nodes with much lower total volume. For 2016, the CAISO-estimated

total cost of congestion was $99 million (CAISO, 2016). This stands in contrast to ERCOT,

the Texas grid, where transmission constraints between wind-generation rich areas in the

Northwest and load centers in the East drive congestion costs (LaRiviere and Lu, 2017).
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5.3 Does Storage Facilitate Renewables?

This paper demonstrates the role of storage in “facilitating integration of renewables,” the

goal of AB2514. Results indicate that storage reduces local nodal prices at the times in which

local solar generally imposes high costs, i.e., late-afternoon and evening hours during spring

and summer. Solar generation has two observable price effects throughout the day. First,

it decreases the grid-level cost of electricity during the late afternoon hours as generation

is high relative to demand, which has the effect of depressing prices due to low net load

(demand net of zero-marginal-cost renewables). Second, during both the morning ramp-up

of solar generation and, especially, the evening ramp-down as the sun sets, more expensive

fossil-fuel generation is necessary to accommodate the fast ramp. Bushnell and Novan (2021)

quantify these effects, and identify more expensive gas turbine (GT) generation as responding

to the evening ramp in lieu of the more efficient combined cycle gas turbine fleet (CCGT).

Therefore, over the day, solar reduces total costs, but accommodating the morning and

evening ramp requires more expensive generation, increasing prices during those hours.

Energy storage reduces local congestion costs during these critical hours, as shown in

Figures 6 and 8. Thus, storage appears to facilitate integration of solar on the grid. By

reducing local congestion, storage makes quickly-dispatched, lower cost plants available to

follow changes in solar generation, alleviating system-wide cost increases associated with

solar capacity (Bushnell and Novan 2021; Bierman 2018). This follows the theory in Section

2, where price effects are timed to peak prices, which in turn are a result of net demand and

line congestion.

6 Conclusion

This research provides the first empirical estimates of the price effect of energy storage. Panel

data estimates show a significant downward effect on nodal prices during peak hours and
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during peak summer months, suggesting that energy storage has a measurable effect on grid

operations. Summer afternoon peaks coincide with times of highest demand for expensive

“peaking” generation, and are the costliest demand periods for which grid operators must

plan. The effect during spring evening hours reaches as much as -$1.87 (-2.2%) per hour,

per MW, while summer effects are smaller at up to -$0.26. These price effects generate an

average $79,942 in cost savings per year, per MW to load-serving entities that are typically

passed on to consumers through rate regulation. The 180 MW of energy storage capacity

in California is estimated to have reduced energy costs across the grid by $47.45M, which

represents a transfer from inframarginal generators. However, even on a distributional basis

(“do ratepayers receive a transfer equal to the cost of energy storage?”), rather than effi-

ciency basis (“is overall welfare increased?”), this amount is not sufficient to fully justify

mandates. Battery operators are not compensated for these cost savings to utilities and

their rate payers. These public ratepayer transfers from inframarginal generation constitute

a substantial fraction of the private benefits from energy price arbitrage and point to a public

interest in storage capacity expansion in the future.
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M. Liski and I. Vehviläinen. Gone with the wind? an empirical analysis of the equilibrium

impact of renewable energy. Journal of the Association of Environmental and Resource

Economists, 7(5):873–900, 2020.

42



R. Lueken and J. Apt. The effects of bulk electricity storage on the PJM market. Energy

Systems, 5(4):677–704, 2014. ISSN 1868-3967.

E. Manresa. Estimating the structure of social interactions using panel data. Unpublished

Manuscript. MIT Sloan, 2016.

I. Mercadal. Dynamic competition and arbitrage in electricity markets: The role of financial

players. American Economic Journal: Microeconomics, 14(3):665–99, 2022.

National Renewable Energy Laboratory. National Solar Radiation Database (NSRDB), 2018.

URL https://nsrdb.nrel.gov/nsrdb-viewer.

A. Nottrott, J. Kleissl, and B. Washom. Energy dispatch schedule optimization and cost ben-

efit analysis for grid-connected, photovoltaic-battery storage systems. Renewable Energy,

55:230–240, 2013. ISSN 0960-1481.

K. Novan. Valuing the wind: renewable energy policies and air pollution avoided. American

Economic Journal: Economic Policy, 7(3):291–326, 2015. ISSN 1945-7731.

M. D. Penna, M. Yeung, and D. Fribush. Electric Program Investment Charge (EPIC)

- Energy Storage for Market Operations. Technical report, Pacific Gas and Electric,

Electric Asset Management Department, San Francisco, CA, 2016. URL https://www.

pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/

electric-program-investment-charge/PGE-EPIC-Project-1.01.pdf.

C. Petersen, M. Reguant, and L. Segura. Measuring the impact of wind power and intermit-

tency. Available at SSRN 4291672, 2022.

B. C. Prest, C. J. Wichman, and K. Palmer. Rcts against the machine: Can machine learning

prediction methods recover experimental treatment effects? Journal of the Association of

Environmental and Resource Economists, 10(5):1231–1264, 2023.

43

https://nsrdb.nrel.gov/nsrdb-viewer
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/PGE-EPIC-Project-1.01.pdf
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/PGE-EPIC-Project-1.01.pdf
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/PGE-EPIC-Project-1.01.pdf


M. Reguant. Complementary bidding mechanisms and startup costs in electricity markets.

The Review of Economic Studies, 81(4):1708–1742, 2014.

M. Reguant. The efficiency and sectoral distributional impacts of large-scale renewable

energy policies. Journal of the Association of Environmental and Resource Economists, 6

(S1):S129–S168, 2019.

R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss. Estimating the value of electricity storage

in PJM: Arbitrage and some welfare effects. Energy economics, 31(2):269–277, 2009. ISSN

0140-9883.

U.S. Department of Energy. Global Energy Storage Database, 2016. URL http://www.

energystorageexchange.org/projects.

V. Viswanathan, K. Mongird, R. Franks, X. Li, and V. Sprenkle. 2022 Grid Energy Storage

Technology Cost and Performance Assessment.

R. Walawalkar, J. Apt, and R. Mancini. Economics of electric energy storage for energy

arbitrage and regulation in New York. Energy Policy, 35(4):2558–2568, 2007. ISSN 0301-

4215.

R. Walawalkar, S. Blumsack, J. Apt, and S. Fernands. An economic welfare analysis of

demand response in the PJM electricity market. Energy Policy, 36(10):3692–3702, 2008.

ISSN 0301-4215.

F. A. Wolak. Level versus Variability Trade-offs in Wind and Solar Generation Investments:

The Case of California. Technical report, 2016.

F. A. Wolak. The Evidence from California on the Economic Impact of Inefficient Distribu-

tion Network Pricing. Technical report, 2018.

44

http://www.energystorageexchange.org/projects
http://www.energystorageexchange.org/projects


C.-K. Woo, I. Horowitz, J. Moore, and A. Pacheco. The impact of wind generation on the

electricity spot-market price level and variance: The Texas experience. Energy Policy, 39

(7):3939–3944, 2011. ISSN 0301-4215.

C.-K. Woo, J. Moore, B. Schneiderman, T. Ho, A. Olson, L. Alagappan, K. Chawla,

N. Toyama, and J. Zarnikau. Merit-order effects of renewable energy and price divergence

in Californias day-ahead and real-time electricity markets. Energy Policy, 92:299–312,

2016. ISSN 0301-4215.

figuresection tablesection

45



46



Appendix A Additional Figures

A.1 Cross-node effects of energy storage by distance

Figure A.1: Cross-node effects by distance. This figure shows the density of distance
between a LASSO-selected pricing node and the energy storage node estimated to have a
price effect. The y-axis shows the magnitude and sign of the effect. A mass of negative
effects lies below 80km, though identified effects persist out to 400km and beyond.
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Appendix B Selection of Storage Sites

I first test for any relationship between a node’s daily price spread and the selection of the

node for installation of energy storage. While this relationship would not threaten identifi-

cation due to the rich set of fixed effects, rejecting the null hypothesis of “no relationship

between storage and price spread” would indicate that arbitrage was a factor in siting de-

cisions, giving rise to concerns about time-varying unobservable trends. Table B.1 shows

the results of a regression of a binary indicator for ever having storage on measures of the

price spread at the node. To generate a relevant index for the price spread, I first calculate

the daily price spread (maximum daily hourly price - minimum daily hourly price) for every

node in the data and take the node-level median for the time period prior to any storage in-

stallation. Additionally, I calculate the daily difference between the 90th and 10th percentile

of hourly prices for each day, and also calculate the node-level median. These approximate

the cross-sectional arbitrage potential for each node prior to the addition of storage. I es-

timate this using both OLS and a logit specification. Results in Table B.1 indicate that

the installation of storage is not significantly correlated with greater price spreads. These

results are consistent with storage location decisions in the pre-2018 period being more about

proof-of-concept and less about active price arbitrage attempts.

To test for selection on trends in spread, I use an event study regression specification to

show the difference in the daily spread for storage and non-storage nodes during the periods

prior to the installation of storage. Figure B.2 shows the results from this event study.

Daily spreads for storage nodes show no differential trend prior to the installation of storage,

indicating that trends in arbitrage opportunities are likely not driving selection of nodes for

storage.

An additional threat to identification would arise from the decision to install storage

being correlated with low price response. Because storage operating at an LMP may change
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the peak price at that node, a profit-maximizing strategy for siting would be to choose nodes

with large spreads, but that will not respond in price strongly to the additional supply. As

noted in the above section, the price determination process embedded in the power flow model

makes sudden, significant changes in price possible – optimal siting of storage would consider

this effect, assuming perfect knowledge of them. If this were the case, and conditional on

observing little correlation between price spread and storage, I interpret these results to be a

lower-bound on the (negative) price effect as any incentive to locate at nodes with low price

response would bias estimates upward towards zero.
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Table B.1: Tests for selection on price spread. Results from regression of binary
indicator for installation of energy storage on node-level price spreads. HAC-robust errors
in parentheses.

Dependent Variable: Has storage
Model: (1) (2) (3) (4)

OLS OLS Logit Logit

Variables
Median Within-day Max Spread -0.0019 -0.1168

(0.0030) (0.2006)
Median 90th − 10th decile -0.0002 -0.0109

(0.0039) (0.2321)

Fit statistics
Pseudo R2 -0.00064 −3.5× 10−6 0.00475 2.51× 10−5

Observations 757 757 757 757

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure B.2: Test for trend in price spread. Event study coefficient plot showing daily
price spread differences between storage and non-storage nodes for up to 150 days prior to
the installation of storage. Includes node and day two-way fixed effects. Errors clustered at
the node.

Given the evidence that siting of storage during the study period was not geared towards

arbitrage opportunities, the effects estimated are best interpreted as average treatment effects

on the treated, or ATT. Siting of future storage based on price spreads, price responsiveness,

or a combination of the two (siting for large arbitrage opportunities in areas where storage

will not dissipate spread) may yield an ambiguous effect on the overall cost of serving load.

On average, the effect of future storage should approach the effect estimated here. Thus, the

ATT estimated here serves a useful purpose in understanding the overall impact of energy

storage on the cost of serving load borne by ratepayers relative to the costs associated with

mandates.
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Appendix C Examples of Price Determination with Power

Flow Models

In this appendix, I present numerical examples that illustrate the role of transmission con-

straints in determining nodal prices.

C.1 Price determination in two-node grid

For illustrative purposes, consider the two-node grid depicted in Figure C.1. The grid con-

sists of two nodes, 1 and 2. There is a generator at each node and a transmission line (edge)

connecting them. The generator at Node 1, G1, has lower marginal cost, and all load is

located at Node 2. Suppose load is 110MW, and each generator has sufficient capacity to

serve the full load. In an unconstrained scenario, the lowest-cost generator, G1, would serve

all load. If transmission line capacity is K̄12 = 100MW, then it is clear that the more costly

G2 generator must be dispatched. Thus, the clearing price at Node 2, P2 is the price of the

expensive generator, while the price at Node 1, P1, remains the price of the less expensive

generator. The congestion cost at Node 2 is the price difference.
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Figure C.1: Example of 2-node grid with one line and one potential line constraint.
Load is 110MW at Node 2, generation at both Node 1 and Node 2. Note that the lowest-cost
electricity at Node 1 will be constrained by the capacity of the line between Node 1 and Node
2, and higher priced generation will be dispatched to meet demand (load) at Node 2.

1

P1 = $100/MW

Load=0

2

P2 = $110/MW

Load = 110

K̄
1
2

=
10

0

The optimal power flow in this example can be solved using a Karush-Kuhn-Tucker

generalization of the lagrangian to minimize cost of generation subject to total generation and

line flow (inequality) constraints. It is assumed for this example that generator constraints

do not bind, leaving only two constraints — that the sum of generation must equal demand,

and that flow over the line be less than or equal to capacity. Let nodes be denoted as n ∈ N ,

generation as Gn, load as Dn, and capacity as K̄. Then the cost minimization problem is

given by:

L = −
N∑
n=1

pn(Gn)Gn +

System-wide power flow constraint︷ ︸︸ ︷
λ(0−

N∑
n=1

Gn −
N∑
n=1

Dn) −µ(K̄ − κκκ× [G−DG−DG−D])︸ ︷︷ ︸
line flow (slack) constraints

,

where GGG is the [2 × 1] vector of generation, DDD is the [2 × 1] vector of demand, and κκκ is
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the shift factor determined by the susceptances of the lines in the network. GGG is the grid

operator’s choice variable. λ is the familiar KKT (lagrangian) multiplier on the total energy

constraint, and µ is the KKT multiplier on the line constraint. κκκ contains one row for each

edge in the network, and one column for each node. Column n of κκκ represents the flow over

each edge that will result from the injection of 1 unit of energy at the reference node and

the withdrawal of 1 unit of energy from node n. If Node 1 is the reference node,12 then

κκκ = [0, 1]. That is, injecting 1 unit of energy at Node 1 and withdrawing it at Node 2 will

increase flow on the line between them by 1 unit. The solution takes the form of optimal

(cost minimizing) generator dispatch and associated prices, denoted PPP . It is:

GGG = [100, 10]

PPP = [10, 20].

Because the objective function minimizes total cost, and because each transmission ca-

pacity is included as a constraint, the KKT multiplier µ is the incremental reduction in the

cost of serving load that would result from relaxing the transmission line constraint by 1 unit.

When the constraint is relaxed, it allows one unit of energy to flow from the less expensive

generator to the more expensive node, displacing costlier generation there, and lowering the

total cost. The shadow value of this constraint is µ = P1 − P2 = −10. If demand were to

decrease to 100MW, or capacity were to increase to 110 MW, the constraint would become

“slack”, and µ would be equal to zero.

In the simple example, the weight on the transmission constraint is 1, as a unit of energy

withdrawn at Node 2 (and injected at Node 1) resulted in an increase in flow on the line of

1. In a more complex network, multiple paths will exist between the withdrawal node and

12A reference node is used to provide the model-implied reference location, but is chosen arbitrarily without
affecting outcomes in a manner similar to the choice of a base or omitted category in a regression including
fixed effects
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the injection node. Each transmission line will have a constraint which, if binding, will have

a corresponding non-zero KKT multiplier. The differential between prices at the withdrawal

node and the injection node will be the sum of these corresponding KKT multipliers, weighted

by the amount of flow that passes over each line.

If storage is located at Node 2 which becomes congested during peak demand (e.g., in

order to defer a transmission upgrade), then transmission constraints bind less frequently

with the storage capacity, and the nodal price will be weakly closer to the grid price, even on

days where grid-wide demand is high. In this case, storage at the congested Node 2 does not

influence the price at Node 1, and prices at Node 1 would be unchanged. If there were a third

node located in the congested part of the grid near Node 2, served also by the same single,

congestable transmission line, then prices at Node 3 would also respond to the introduction

of storage capacity assuming lines between Nodes 2 and 3 are uncongested. Prices at the

two nodes in the congested portion of the grid would decline while prices at Node 1 would

be unchanged. Because the network is not a perfect lattice where all physical neighbors are

connected, these congested parts of the grid could be physically disconnected, but linked in

the network. Without knowledge of the physical network structure (as in Chen et al. (2009)),

estimating price effects is difficult.

C.2 Price determination in 4-node grid

A final example demonstrates price dependencies amid congestion. Consider the 4-node

network shown in Figure C.2. Demand is located at Node D1, and generation is located at

nodes G2, G3, and G4, with prices as shown. Capacities are denoted K̄. The susceptance of

each line determines the flow when power is injected at one node and withdrawn at another.

With some algebraic manipulation, the susceptances form the shift factor matrix shown in

55



equation 12, with Node D1 chosen as the reference node13.

Figure C.2: Example of 4-node grid with line constraints. Note that the lowest-cost
electricity at G3 will be constrained by the low capacity of the edge K34, and higher priced
generation will be dispatched to meet demand at D1.
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The shift factor matrix for this grid, κκκ is derived using a power flow model with Node D1

as the reference node. The power flow model is an algebraic manipulation of the susceptances

and edges of the network.14 Based on the susceptances, the shift factor matrix is:

κκκ =



0 0.8 0.6 0.2

0 −0.2 0.6 0.2

0 0.2 0.4 −0.2

0 0.2 0.4 0.8


(12)

Each column in κκκ represents a node, while each row represents a line. I index lines between

nodes by e ∈ E where E = {21, 32, 34, 41}. Each column reports the flow of energy across

each edge resulting from injecting at the reference node and withdrawing at node n ∈
13The choice of which node is the “reference” node is arbitrary. In practice, an increase in withdrawal

at one node is met with an increase in supply at another node, or many other nodes, not necessarily the
reference node. In this case, the change in the power flow equations is the sum of the effect of withdrawing
one unit of energy at the withdrawal node and injecting at the reference node, and withdrawing one unit at
the reference node and injecting at the generation node(s)

14I abstract away from reactive power and angles to illustrate the nature of congestion pricing in a simplified
manner.
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{D1, G2, G3, G4}. For instance, 1MW injected at D1 and withdrawn at G3 will increase

the flow over e21 by 0.6, e32 by 0.6, e34 by 0.4, and e41 by 0.4 (all units in MW). Similarly,

injecting at G3 and withdrawing at D1 yields the opposite — e21 by -0.6, e32 by -0.6, e34

by -0.4, and e41 by -0.4. The lower relative susceptance on e34 causes the lower flow relative

to ther lines. The shift factors in column 1, the reference node, are zero because injecting

1MW and withdrawing 1MW at the reference node does not increase flow anywhere on the

network.

Given the prices and net demand vector DDD = [300, 0, 0, 0], one can solve a constrained

optimization for the generation vector that results in the lowest-cost power flow subject to

the line constraints. The solution is:

GGG =



0

750

1000

1250


,PPP =



45

40

35

50


,µµµ =



0

0

25

0


The least expensive generator is not serving load at all nodes. In fact, the generator with

greatest supply in the solution is the most expensive. The constraint, µ times the matrix

κκκ determines the price difference between the reference node, D1 and the other nodes. For

instance, at G3, 0 + 0 + (25× 0.4) + 0 =$10 less at G3 relative to D1. If storage at any node

were to eliminate the congestion on e34, the price at nodes G2, G3, and G4 would decrease.

Entries in the shift factor matrix κκκ may be negative, as is the case here — an increase

in injections and withdrawals at some pair of nodes may reduce flow across some lines. This

can be particularly beneficial when this relieves a congested line. Because the shadow value

on a constraint is always positive, the negative entry in the shift factor matrix is the source

of negative congestion prices. Negative congestion prices signal that withdrawals at the

negative-priced node help to relieve a constraint, allowing additional (less expensive) power
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to flow to other nodes, and, thereby reducing the cost of serving load (i.e. the objective

function).

Appendix D Formal model of grid pricing

Let the congestion portion of the nodal energy constraint be denoted as λλλc, with elements

λcn, and the total nodal energy constraint (the nodal price) be denoted as λλλ with elements λn.

The KKT shadow value for transmission congestion is µµµ, with elements µe. For a network

with E edges and N nodes, µµµ ∈ RE and λλλc ∈ RN :

λn = λe + λcn

= λe + µµµ′κκκn, (13)

where λe is the marginal cost of energy at the reference node, λc is the congestion compo-

nent, and κκκn is the nth column of the shift factor matrix derived directly from the physical

resistance of each edge (transmission line) in the network. The {1, . . . , E} elements of κκκn

represent the energy flow across each edge e from the reference node to node n. They are not

constrained to positive numbers, though the value of the elements of µµµ must be greater than

zero. Therefore, it is possible for λcn < 0. This can occur at a node that has low-cost energy

accessible to it, but congestion keeps that low-cost energy from flowing to the reference node.

If one increases the withdrawal at a negative congestion cost node (λcn < 0), and increases

the injection at the reference node (which was unable to be served by the low-cost generator

due to congestion), then (1) the total cost of serving demand has decreased as the cheaper

generator is being used, and (2) the net flow on the congested line has decreased.

Congestion is priced at every node in a network but can be affected by withdrawals or
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injections at any node, especially those that are grid “neighbors”. As a result, the effect of

energy storage does not follow a congestion analog to equation 3— the discharge of energy

at peak times may increase the nodal price, or may cause another previously uncongested

transmission line to become the binding constraint, raising nodal prices elsewhere. However,

decreases in demand during peak periods will, over the entire grid, strictly decrease total

congestion costs. The magnitude and location of price changes due to energy storage are

determined by network topology, which is not publicly available, and, therefore, unobserved

to the econometrician. Changes in network congestion costs affect transfers to LSEs and

ratepayers.

The vector λcλcλc represents the congestion component of the cost of injecting one unit of

energy at the reference node and withdrawing one additional unit of electricity at any node

n. The price paid for all units of energy at node n includes λcn. Interest centers on the effect

of a change in nodal demand on congestion costs: dλcλcλc

dQn
. A change in demand at node n,

however, may change congestion costs at all nodes by changing the transmission constraint

shadow value vector, µµµ. Furthermore, the change in λcλcλc is itself dependent on the vector of

net demand, QQQ:

dλλλ

dQn

=
dλe

dQn

+
dλc(QQQ)λc(QQQ)λc(QQQ)

dQn

=
dλe

dQn

+ κκκ′
(
dµµµ(QQQ)

dQn

)
=

dλe

dQn

+

[
E∑
e=1

dµe(QQQ)

dQn

κ′1e,

E∑
e=1

dµe(QQQ)

dQn

κ′2e, . . . ,

E∑
e=1

dµe(QQQ)

dQn

κ′Ne

]′
(14)

where the first equality follows from the definition in equation 13 and that κκκ is a constant.

The second equality states that the change in each node’s congestion cost, λcn, is the sum of

the changes in each of the E transmission constraints, µe, weighted by the Kirchoff’s Law-
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derived flows between the reference node and n. The KKT slack conditions on µµµ provide

intuition for the difference between peak period and nadir period price effects. When a

constraint is not binding on edge e, slack conditions require µe = 0. If energy storage at

node n is charged during the nadir, and transmission constraints are likely to be slack at this

time, then the probability distribution of price effects will have mass at zero (e.g. charging

during off-peak times will not increase congestion costs).

Amid congestion, interest centers on storage effects on both own-node congestion prices,

dλcn
dQn

and cross-node congestion prices, dλλλc

dQn
. These determine the total congestion price effect

of discharging stored energy at node n during high demand QQQH recharging storage capacity

during low demand, QQQL. A change in Qn will result in a change in generation at some

unknown node(s), further complicating estimation of the total effect. The total change in

congestion cost per unit of energy storage at node n may be written as:

Total Change u
(
−s× dλc(QH)λc(QH)λc(QH)

dQn

×QHQHQH

)
+

(
s× dλc(QL)λc(QL)λc(QL)

dQn

×QLQLQL

)
(15)

The first term in parentheses is the energy storage transaction −s at node n multiplied by

the price effect at each node from a change in Qn, multiplied by the total demand at each

node during the peak period. The second term is identical, but for an increase in withdrawal

of s during the nadir.

In the previous sections, peak and nadir times are summarized by {H,L}. Operation of

energy storage generally extends beyond a single hour. Storage is charged (or discharged)

over 1-4-hour periods. Storage operated to shave peak demand or engage in energy arbitrage

will discharge during a node’s peak period. Because nodal prices are unique to each node and

determined as solutions to a complex non-linear optimization problem, the peak and nadir

periods may occur at different times for different nodes. Therefore, storage price effects may
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be measured over multiple hours that differ from node to node. Battery operations are not

observed, so total daily benefits of a marginal unit of storage capacity are calculated as the

sum of price changes over all hours of the day:

Total Benefits = s×

(
24∑
t=1

dλλλt(QtQtQt)

dES
QtQtQt

)
. (16)

Appendix E LASSO Bias and Methods

The source of this bias is rooted in the machine learning nature of the parameter selection.

This bias is generated as follows: If two independent variables are correlated with each

other, and each has an associated effect on the dependent variable, a LASSO algorithm will

select only one, zeroing out the coefficient of the other, despite their correlation. This is

because the LASSO objective is parsimonious prediction and not inference. If the dependent

variable can be explained with one variable instead of two, then the penalty term results

in the selection of the more parsimonious specification. In this case, an OLS specification

would partition out the explained variance, keeping both variables, provided the two are not

perfectly correlated.

By selecting only one of two explanatory variables, LASSO introduces the possibility of

an omitted variables bias Belloni et al. (2012, 2014a,b). The solution requires either including

any variables in the variable selection stage that also explain the variable of interest (e.g.

the treatment variable) derived from a first-stage LASSO procedure, or orthoganolizing the

variables of interest and potential covariates (Belloni et al., 2014a). Following Manresa

(2016), I do the latter. In practice, this ensures that covariates in wnt do not confound the

LASSO selection for non-zero entries in γinhs. Although ESnt is independent of within-season

covariates in wnt, spurious correlations would result in mis-selection of non-zero entries.
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Results are robust to either method, and are little changed when following a “naive” single-

stage approach.

The Double Pooled LASSO is introduced in Manresa (2016). In this application, the

objective of the procedure is to estimate an unbiased sparse matrix of cross-node effects of

energy storage for every hour-season combination, Γhs, where each entry γinhs is the price

effect at node j of 1 MW of energy storage at node i in hour h and season s. It addresses

the model selection omitted variables bias via the “partialling out” method of Belloni et al.

(2012), which

The Double-Pooled LASSO is estimated in the following three stages:

The first stage regresses wit and λit on ESnt:

wit = ρiESnt + ερ

λit = φiESnt + εφ

and generates residuals w̃it and λ̃it, orthogonal to ESnt:

w̃nt = wnt − ρ̂nESnt

λ̃nt = λnt − φ̂nESnt

In the second stage, a consistent estimate of θn, θ̂n is generated using w̃nt and λ̃nt:
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λ̃nt = θnw̃nt + εθn

and λ̂it, orthogonal to w̃it is generated:

λ̂nt = λnt − θ̂nw̃nt

λ̂nt is a consistent estimate of prices that is orthogonal to the variation in wit that is

uncorrelated with ESnt. Thus, the effect of wit is accounted for, but because the effect of

wnt that is removed is orthogonal to ESnt, LASSO is not subject to model selection omitted

variables bias — the covariance between ESnt and λnt remains intact.

Finally, the LASSO estimator is used to estimate Γhs, the n × i matrix of cross-node

effects on price at node n from storage at node i for hour h and season s. The LASSO

procedure estimates each row, i, of the matrix separately:

arg min
γγγnhs

T∑
t=1

(
λ̂nt −

NES∑
i

γnihsESit

)2

+ π

NES∑
i

|γnihs|φin,

where π is the LASSO penalty term, φin is the penalty loading, and γinhs is the hour-season

specific effect of node i on node n, which is assumed to be sparse.

Penalty loadings, φij are selected through an iterated estimation process described in

Belloni et al. (2012). The penalty weights allow for sharp properties of the LASSO estimator,

even in the presence of dependence in errors in a time-series setting (Manresa, 2016). The

LASSO is estimated by adapting Christian Hansen’s “shooting algorithm”.15 π, the penalty

term, is calculated via a simulation process.

15http://faculty.chicagobooth.edu/christian.hansen/research/#Code
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To remove the shrinkage bias inherent in LASSO feature selection (owing to the penalty

term), a final OLS estimation is done for each n using nodes i identified as having γnihs > 0,

setting aside all storage nodes designated by LASSO as being zero. Let this set be de-

noted LLASSO. This Double Pooled LASSO estimator eliminates shrinkage bias (see Manresa

(2016); Belloni et al. (2014b)):

λnt =
4∑
s=1

24∑
h=1

βhsESnt ×HRt × SEASONt + θnwnt+

NES∑
i 6=n

1 (γinhs ∈ LLASSO) γinhsESnt ×HRt × SEASONt + δnhs + ηy + εnt (17)

Proofs and methods for estimation are provided by Manresa (2016).
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